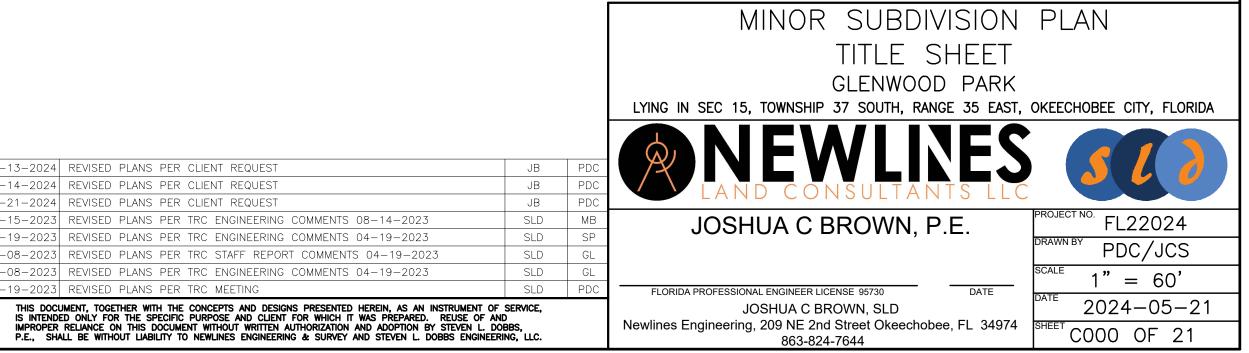

MINOR SUBDIVISION **GLENWOOD PARK** LOCATED IN SECTION 15, TOWNSHIP 37 SOUTH, RANGE 35 EAST OKEECHOBEE CITY, FLORIDA

<u>sheet inde</u>	<u>EX:</u>
SHEET COOO:	TITLE SHEET
SHEET COO1:	GENERAL NOTES & SPECIFICATIONS
SHEET CD001:	BLOCK 110 EXISTING CONDITION, DEMOLITION, AND SEDIMENT CONTROL PLAN
SHEET CD002:	BLOCK 121 EXISTING CONDITION, DEMOLITION, AND SEDIMENT CONTROL PLAN
SHEET C201:	BLOCK 110 HORIZONTAL CONTROL, STRIPPING AND SIGNAGE PLAN
SHEET C202:	BLOCK 121 HORIZONTAL CONTROL, STRIPPING AND SIGNAGE PLAN
SHEET C301:	BLOCK 110 PAVING, GRADING & DRAINAGE PLAN
SHEET C302:	BLOCK 121 PAVING, GRADING & DRAINAGE PLAN
SHEET C401:	BLOCK 110 OVERALL SEWERLINE PLAN
SHEET C402:	BLOCK 121 OVERALL SEWERLINE PLAN
SHEET C501:	BLOCK 110 OVERALL WATERLINE PLAN
SHEET C502:	BLOCK 121 OVERALL WATERLINE PLAN
SHEET C600:	DETAILS – 1
SHEET C601:	DETAILS – 2
SHEET C602:	DETAILS – 3
SHEET C603:	DETAILS – 4
SHEET C604:	DETAILS – 5
SHEET C605:	DETAILS – 6
SHEET C701:	BLOCK 110 LANDSCAPING PLAN
SHEET C702:	BLOCK 121 LANDSCAPING PLAN
SHEET C801:	STORAGE EXHIBIT


LEGAL DESCRIPTION

LOT 1 THROUGH 12, INCLUSIVELY, BLOCK 110, CITY OF OKEECHOBEE, PLAT BOOK 5, PAGE 5, OKEECHOBEE COUNTY, FLORIDA.

LOT 1 THROUGH 12, INCLUSIVELY, BLOCK 121, CITY OF OKEECHOBEE, PLAT BOOK 5, PAGE 5, OKEECHOBEE COUNTY, FLORIDA.

GENERAL NOTES

- 1. THE SURVEY DATE IS MARCH 18, 2021.
- 2. THIS IS A BOUNDARY SURVEY, AS DEFINED IN CHAPTER 5J-17.050(11) OF THE FLORIDA ADMINISTRATIVE CODE.
- 3. THIS SURVEY MAP AND REPORT OR THE COPIES THEREOF ARE NOT VALID WITHOUT THE SIGNATURE AND THE ORIGINAL SEAL OF A FLORIDA LICENSED SURVEYOR AND MAPPER.
- 4. ADDITIONS OR DELETIONS TO SURVEY MAPS OR REPORTS BY OTHER THAN THE SIGNING PARTY OR PARTIES IS PROHIBITED WITHOUT WRITTEN CONSENT OF THE SIGNING PARTY OR PARTIES.
- 5. BEARINGS SHOWN HEREON ARE BASED ON GRID NORTH, AND ARE REFERENCED TO THE FLORIDA STATE PLANE COORDINATE SYSTEM, EAST ZONE, NORTH AMERICAN DATUM OF 1983, 2011 ADJUSTMENT. THE BEARING BASE FOR THIS SURVEY IS THE CENTERLINE OF NORTHEAST 4TH STREET BETWEEN BLOCKS 110 AND 121, SAID LINE BEARS N 89°47'50" E AND ALL OTHER BEARINGS ARE RELATIVE THERETO.
- 6. THIS SURVEY DOES NOT HAVE THE BENEFIT OF A CURRENT TITLE COMMITMENT, OPINION, OR ABSTRACT. DURING THE COURSE OF THE SURVEY SOME SEARCHES OF THE PUBLIC RECORDS WERE MADE, BUT THESE SEARCHES WERE NOT EXHAUSTIVE AND SHOULD NOT BE CONSIDERED A SUBSTITUTE FOR A PROPER TITLE COMMITMENT, OPINION, OR ABSTRACT OBTAINED FROM A TITLE AGENCY OR OTHER TITLE PROFESSIONAL.
- 7. THE LEGAL DESCRIPTION OF THE LAND CONTAINED IN THIS BOUNDARY SURVEY IS BASED ON THE DESCRIPTION RECORDED IN OFFICIAL RECORDS BOOK 786, PAGE 1593, AND OFFICIAL RECORDS BOOK 816, PAGE 970 AS RECORDED IN THE PUBLIC RECORDS OF OKEECHOBEE COUNTY, FLORIDA.
- 8. THIS SURVEY DELINEATES THE LOCATIONS OF THE LEGAL DESCRIPTIONS ON THE GROUND, BUT DOES NOT DETERMINE OWNERSHIP OR PROPERTY RIGHTS.
- 9. ADJOINING PROPERTY INFORMATION WAS OBTAINED FROM OKEECHOBEE COUNTY PROPERTY APPRAISER OFFICE AND PER PLAT.
- 10. AERIAL IMAGERY SHOWN HEREON WAS OBTAINED FROM THE LAND BOUNDARY INFORMATION SYSTEM (LABINS) DATED 2018 AND IS SHOWN FOR INFORMATIONAL PURPOSES ONLY.
- 11. SUBJECT PROPERTY IS LOCATED IN FLOOD ZONE X PER FEMA MAP NUMBER 12093C, PANEL NUMBER 0485C, WITH AN EFFECTIVE DATE OF 07/16/15.

GENERAL NOTES

1. CONTRACTOR IS RESPONSIBLE FOR CHECKING ACTUAL SITE CONDITIONS BEFORE STARTING CONSTRUCTION.

2. ANY DISCREPANCIES ON THE DRAWINGS SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER BEFORE COMMENCING WORK.

3. CONTRACTOR SHALL OBTAIN ALL REQUIRED BUILDING PERMITS BEFORE COMMENCING WORK.

4. CONTRACTOR SHALL BE RESPONSIBLE FOR LOCATION OF ALL EXISTING UTILITIES. THE CONTRACTOR SHALL CONTACT ALL CONCERNED UTILITIES AT LEAST 48 HOURS IN ADVANCE FOR CONSTRUCTION OPERATIONS. 5. NO FIELD CHANGES OR DEVIATIONS FROM DESIGN TO BE MADE WITHOUT PRIOR APPROVAL OF THE ENGINEER.

6. ALL CONSTRUCTION SHALL BE COMPLETED IN ACCORDANCE WITH THE APPLICABLE ORDINANCES OF CITY OF OKEECHOBEE. ELORIDA.

7. CONTRACTOR SHALL SUPPLY DENSITY TESTS TO ENGINEER ON ALL SUB-GRADE AND BASE. TESTS SHALL BE PREPARED PER AASHTO T-180 METHOD.

8. SLOPE GRADES FROM ELEVATIONS SHOWN TO EXISTING GRADE AT PROPERTY LINE.

9. ENGINEER SHALL BE NOTIFIED AT LEAST 48 HOURS IN ADVANCE FOR ANY INSPECTION.

10. ALL TRAFFIC CONTROL DEVICES SHALL BE IN ACCORDANCE WITH M.U.T.C.D. STANDARDS. 11. EROSION AND SEDIMENTATION CONTROL TECHNIQUES SHALL BE INCORPORATED DURING CONSTRUCTION AS FOLLOWS:

(1) SILT SCREENS SHALL BE MAINTAINED AT THE PROJECT PERIMETER. (2) NO OFF-SITE DISCHARGES SHALL OCCUR DURING CONSTRUCTION. IN THE EVENT DISCHARGE IS REQUIRED, HAY BALES AND/OR TURBIDITY CURTAINS SHALL BE INCORPORATED AT THE DISCHARGE POINT AS NECESSARY TO CONTROL TURBIDITY

EROSION AND SEDIMENTATION CONTROL NOTES

CONSTRUCTION ACTIVITIES CAN RESULT IN THE GENERATION OF SIGNIFICANT AMOUNTS OF POLLUTANTS WHICH MAY REACH SURFACE OR GROUND WATERS. ONE OF THE PRIMARY POLLUTANTS OF SURFACE WATERS IS SEDIMENT DUE TO EROSION. EXCESSIVE QUANTITIES OF SEDIMENT WHICH REACH WATER BODIES OF FLOODPLAINS HAVE BEEN SHOWN TO ADVERSELY AFFECT THEIR PHYSICAL, BIOLOGICAL AND CHEMICAL PROPERTIES. TRANSPORTED SEDIMENT CAN OBSTRUCT STREAM CHANNELS, REDUCE HYDRAULIC CAPACITY OF WATER BODIES OF FLOODPLAINS, REDUCE THE DESIGN CAPACITY OF CULVERTS AND OTHER WORKS, AND ELIMINATE ETHIC INVERTEBRATES AND FISH SPAWNING SUBSTRATES BY SILTATION. EXCESSIVE SUSPENDED SEDIMENTS REDUCE LIGHT PENETRATION AND THEREFORE, REDUCE PRIMARY PRODUCTIVITY

MINIMUM STANDARDS:

PROVIDED.

1. SEDIMENT BASIN AND TRAPS, PERIMETER DIKES, SEDIMENT BARRIERS AND OTHER MEASURES INTENDED TO TRAP SEDIMENT SHALL BE CONSTRUCTED AS A FIRST STEP IN ANY LAND-DISTRIBUTING ACTIVITY AND SHALL BE MADE FUNCTIONAL BEFORE UNSLOPE LAND DISTURBANCE TAKES PLACE.

ALL SEDIMENT CONTROL MEASURES ARE TO BE ADJUSTED TO MEET FIELD CONDITIONS AT THE TIME OF CONSTRUCTION AND BE CONSTRUCTED PRIOR TO ANY GRADING OR DISTURBANCE OF EXISTING SURFACE MATERIAL ON BALANCE OF SITE. PERIMETER SEDIMENT BARRIERS SHALL BE CONSTRUCTED TO PREVENT SEDIMENT OR TRASH FROM FLOWING OR FLOATING ON TO ADJACENT PROPERTIES.

PERMANENT OR TEMPORARY SOIL STABILIZATION SHALL BE APPLIED TO DENUDED AREAS WITHIN SEVEN DAYS AFTER FINAL GRADE IS REACHED ON ANY PORTION OF THE SITE. TEMPORARY SOIL STABILIZATION SHALL BE APPLIED WITHIN SEVEN DAYS TO DENUDED AREAS THAT MAY NOT BE AT FINAL GRADE BUT WILL REMAIN UNDISTURBED FOR LONGER THAN 30 DAYS. PERMANENT STABILIZATION SHALL BE APPLIED TO AREAS THAT ARE TO BE LEFT UNDISTURBED FOR MORE THAN ONE YEAR.

DURING CONSTRUCTION OF THE PROJECT, SOIL STOCKPILES SHALL BE STABILIZED OR PROTECTED WITH SEDIMENT TRAPPING MEASURES. THE APPLICANT IS RESPONSIBLE FOR THE TEMPORARY PROTECTION AND PERMANENT STABILIZATION OF ALL SOIL STOCKPILES ON SITE AS WELL AS SOIL INTENTIONALLY TRANSPORTED FROM THE PROJECT

5. A PERMANENT VEGETATIVE COVER SHALL BE ESTABLISHED ON DENUDED AREAS NOT OTHERWISE PERMANENTLY STABILIZED. PERMANENT VEGETATION SHALL NOT BE CONSIDERED ESTABLISHED UNTIL A GROUND COVER IS ACHIEVED THAT, IN THE OPINION OF THE REVIEWER, IS UNIFORM, MATURE ENOUGH TO SURVIVE AND WILL INHIBIT EROSION.

6. STABILIZATION MEASURES SHALL BE APPLIED TO EARTHEN STRUCTURES SUCH AS DAMS, DIKES AND DIVERSIONS IMMEDIATELY AFTER INSTALLATION.

SURFACE RUNOFF FROM DISTURBED AREAS THAT IS COMPRISED OF FLOW FROM DRAINAGE AREAS GREATER THAN OR EQUAL TO THREE ACRES SHALL BE CONTROLLED BY A SEDIMENT BASIN. THE SEDIMENT BASIN SHALL BE DESIGNED AND CONSTRUCTED TO ACCOMMODATE THE ANTICIPATED SEDIMENT LOADING FROM THE LAND-DISTURBING ACTIVITY. THE OUTFALL DEVICE OR SYSTEM DESIGN SHALL TAKE INTO ACCOUNT THE TOTAL DRAINAGE AREA FLOWING THROUGH THE DISTURBED AREA TO BE SERVED BY THE BASIN.

8. AFTER ANY SIGNIFICANT RAINFALL, SEDIMENT CONTROL STRUCTURES WILL BE INSPECTED FOR INTEGRITY. ANY DAMAGED DEVICES SHALL BE CORRECTED IMMEDIATELY.

CONCENTRATED RUNOFF SHALL NOT FLOW DOWN CUT OR FILL SLOPES UNLESS CONTAINED WITHIN AN ADEQUATE TEMPORARY OR PERMANENT CHANNEL, FLUME OR SLOPE DRAIN STRUCTURE. 10. WHENEVER WATER SEEPS FROM A SLOPE FACE, ADEQUATE DRAINAGE OR OTHER PROTECTION SHALL BE

11. SEDIMENT WILL BE PREVENTED FROM ENTERING ANY STORM DRAIN SYSTEM. DITCH OR CHANNEL. ALL STORM SEWER INLETS THAT ARE MADE OPERABLE DURING CONSTRUCTION SHALL BE PROTECTED SO THAT SEDIMENT-LADEN WATER CANNOT ENTER THE CONVEYANCE SYSTEM WITHOUT FIRST BEING FILTERED OR OTHERWISE TREATED TO REMOVE SEDIMENT

BEFORE TEMPORARY OR NEWLY CONSTRUCTED STORMWATER CONVEYANCE CHANNELS ARE MADE OPERATIONAL. ADEQUATE OUTLET PROTECTION AND ANY REQUIRED TEMPORARY OR PERMANENT CHANNEL LINING SHALL BE INSTALLED IN BOTH THE CONVEYANCE CHANNEL AND RECEIVING CHANNEL.

13. WHEN WORK IN A LIVE WATERCOURSE IS PERFORMED, PRECAUTIONS SHALL BE TAKEN TO MINIMIZE ENCROACHMENT, CONTROL SEDIMENT TRANSPORT AND STABILIZE THE WORK AREA TO THE GREATEST EXTENT POSSIBLE DURING CONSTRUCTION. NONERODIBLE MATERIAL SHALL BE USED FOR THE CONSTRUCTION OF CAUSEWAYS AND COFFERDAMS. EARTHEN FILL MAY BE USED FOR THESE STRUCTURES IF ARMORED BY NONERODIBLE COVER MATERIALS. 14. WHEN A LIVE WATERCOURSE MUST BE CROSSED BY CONSTRUCTION VEHICLES, A TEMPORARY STREAM CROSSING

CONSTRUCTED OF NONERODIBLE MATERIAL SHALL BE PROVIDED. 15. THE BED AND BANKS OF A WATERCOURSE SHALL BE STABILIZED IMMEDIATELY AFTER WORK IN THE WATERCOURSE IS COMPLETED.

16. PERIODIC INSPECTION AND MAINTENANCE OF ALL SEDIMENT CONTROL STRUCTURES MUST BE PROVIDED TO ENSURE INTENDED PURPOSE IS ACCOMPLISHED. THE DEVELOPER, OWNER AND/OR CONTRACTOR SHALL BE CONTINUALLY RESPONSIBLE FOR ALL SEDIMENT LEAVING THE PROPERTY. SEDIMENT CONTROL MEASURES SHALL BE IN WORKING CONDITION AT THE END OF EACH WORKING DAY.

17. UNDERGROUND UTILITY LINES SHALL BE INSTALLED IN ACCORDANCE WITH THE FOLLOWING STANDARDS IN ADDITION TO OTHER APPLICABLE CRITERIA: NO MORE THAN 500 LINEAR FEET OF TRENCH MAY BE OPENED AT ONE TIME.

EXCAVATED MATERIAL SHALL BE PLACED ON THE UPHILL SIDE OF TRENCHES. EFFLUENT FROM DEWATERING OPERATIONS SHALL BE FILTERED OR PASSED THROUGH AN APPROVED SEDIMENT

TRAPPING DEVICE, OR BOTH, AND DISCHARGED IN A MANNER THAT DOES NOT ADVERSELY AFFECT FLOWING STREAMS OR OFF-SITE PROPERTY. D. RESTABILIZATION SHALL BE ACCOMPLISHED IN ACCORDANCE WITH THESE REGULATIONS.

18. WHERE CONSTRUCTION VEHICLE ACCESS ROUTES INTERSECT PAVED PUBLIC ROADS, PROVISIONS SHALL BE MADE TO MINIMIZE THE TRANSPORT OF SEDIMENT BY TRACKING ONTO THE PAVED SURFACE, WHERE SEDIMENT IS TRANSPORTED ONTO A PUBLIC ROAD SURFACE WITH CURBS AND GUTTERS, THE ROAD SHALL BE CLEANED THOROUGHLY AT THE END OF EACH DAY. SEDIMENT SHALL BE REMOVED FROM THE ROADS BY SHOVELING OR SWEEPING AND TRANSPORTED TO A SEDIMENT CONTROL DISPOSAL AREA. STREET WASHING SHALL BE ALLOWED ONLY AFTER SEDIMENT IS REMOVED IN THIS MANNER. THIS PROVISION SHALL APPLY TO INDIVIDUAL SUBDIVISION LOTS AS WELL AS TO LARGER LAND-DISTRIBUTING ACTIVITIES.

19. ALL TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES SHALL BE REMOVED WITHIN 30 DAYS AFTER FINAL SITE STABILIZATION OR AFTER THE TEMPORARY MEASURES ARE NO LONGER NEEDED, IN THE OPINION OF THE REVIEWER. DISTURBED SOIL AREAS RESULTING FROM THE DISPOSITION OF TEMPORARY MEASURES SHALL BE PERMANENTLY STABILIZED TO PREVENT FURTHER EROSION AND SEDIMENTATION.

20. PROPERTIES AND WATERWAYS DOWNSTREAM FROM CONSTRUCTION SITE SHALL BE PROTECTED FROM SEDIMENT DISPOSITION AND EROSION.

21. PHASED PROJECTS SHOULD BE CLEARED IN CONJUNCTION WITH CONSTRUCTION OF EACH PHASE.

22. EROSION CONTROL DESIGN AND CONSTRUCTION SHALL FOLLOW THE REQUIREMENTS IN INDEX NOS. 101, 102 AND 103 OF FDOT ROADWAY AND TRAFFIC DESIGN STANDARDS.

23. THE REVIEWER MAY APPROVE MODIFICATIONS OR ALTER PLANS TO THESE EROSION CONTROL CRITERIA DUE TO SITE SPECIFIC CONDITIONS.

> ENGINEER OF RECORD INSPECTION REQUIREMENTS CONTRACTOR TO CALL CONTRACT ENGINEER OF RECORD 48 HOURS ADVANCE FOR FOLLOWING INSPECTIONS: 1. PRECONSTRUCTION MEETING 2. DRAINAGE PIPE (UNCOVERED) 3. PAVEMENT SUBGRADE

4. PAVEMENT BASE 5. FINAL

EARTHWORK AND DRAINAGE SPECIFICATION

1. CLEARING AND GRUBBING:

CLEARING AND GRUBBING SHALL BE PERFORMED WITHIN THE LIMITS OF THE PROJECT WORK IN ACCORDANCE WITH SECTION 110, FLORIDA DEPARTMENT OF TRANSPORTATION (FDOT) SPECIFICATIONS. THIS ITEM SHALL INCLUDE, BUT IS NOT LIMITED TO, THE COMPLETE REMOVAL AND LEGAL DISPOSAL OF ALL TREES, BRUSH, STUMPS, ROOTS, GRASS, WEEDS, RUBBISH AND OTHER UNDESIRABLE MATERIAL TO A DEPTH OF 18 INCHES BELOW NATURAL GROUND OR PROPOSED FINISHED GRADE, WHICHEVER IS LOWER. THE AREAS TO BI CLEARED GENERALLY CONSIST OF THE ENTIRE SITE WITH THE EXCEPTION OF AREAS SPECIFICALLY NOTED ON THE LANDSCAPE PLANS AS PRESERVE AREAS OR AS AREAS TO REMAIN UN-CLEARED. CARE SHALL BE TAKEN TO INSURE THAT NO PRESERVE AREAS OR WETLAND AREAS ARE IMPACTED BY THE CLEARING OPERATION. PRIOR TO INITIATING THE CLEARING OPERATION, ALL ADJACENT WETLAND AND PRESERVE AREAS SHALL BE MARKED AND FLAGGED IN ACCORDANCE WITH THE CITY OF OKEECHOBEE AND SOUTH FLORIDA WATER MANAGEMENT DISTRICT (SFWMD) REQUIREMENTS ALL SUCH AREAS IMMEDIATELY ADJACENT TO THE CLEARING OPERATION SHALL ALSO BE PROTECTED BY THE INSTALLATION OF TEMPORARY SILT BARRIERS IN ACCORDANCE WITH THE REQUIREMENTS OF THE CITY OF OKEECHOBEE AND THE SFWMD. FURTHER EROSION CONTROL SHALL BE ACCOMPLISHED BY SEEDING AND MULCHING ALL DISTURBED AREAS AS SOON AS THEY ARE AT FINAL GRADE, PER THE SPECIFICATIONS FOR SEEDING AND MULCHING FOUND ELSEWHERE ON THIS SHEET

FEDERAL REQUIREMENTS. 2.EARTHWORK AND GRADING:

ALL EARTHWORK AND GRADING SHALL BE PERFORMED AS REQUIRED TO ACHIEVE THE FINAL GRADES, TYPICAL SECTIONS AND ELEVATIONS SHOWN ON THE PLANS. IN ALL OTHER RESPECTS, MATERIALS AND CONSTRUCTION METHODS FOR EARTHWORK, EMBANKMENT, EXCAVATION AND GRADING SHALL CONFORM TO THE REQUIREMENTS OF FDOT SPECIFICATIONS, SECTION 120. ANY PLASTIC OR OTHERWISE UNDESIRABLE MATERIAL WITHIN 36 INCHES OF FINISHED ROAD GRADE SHALL BE REMOVED AND REPLACED WITH SUITABLE MATERIAL. THE CONTRACTOR SHALL ALSO REFER TO THE SOILS REPORT, IF AVAILABLE. THE SPECIFICATIONS AND RECOMMENDATIONS INCLUDED IN THAT REPORT SHALL BE CONSIDERED AS A PART OF THESE PLANS AND SPECIFICATIONS. SHOULD THERE BE ANY CONFLICT BETWEEN THAT DOCUMENT AND ANY REQUIREMENTS OF THESE DRAWINGS OR SPECIFICATIONS, THE MOST RESTRICTIVE

REQUIREMENT SHALL GOVERN. 3. PAVING IMPROVEMENTS:

ALL AREAS PROPOSED FOR PAVING SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE DESIGN GRADES AND TYPICAL SECTIONS SHOWN ON THE DRAWINGS, AND IN CONFORMANCE TO THE REQUIREMENTS OF THE CITY OF OKEECHOBEE AND FLORIDA DEPARTMENT OF TRANSPORTATION

- OTHERWISE APPROVED BY THE ENGINEER.
- B. BASE: LIMEROCK BASE MATERIAL SHALL BE COMPACTED TO 98% OF MAXIMUM DENSITY PER AASHTO T-180. ALL LIMEROCK INCLUDED IN THE SOILS ENGINEER'S REPORT.
- C. SUB-GRADE: SUB-GRADE SHALL BE COMPACTED TO 98% OF MAXIMUM DENSITY PER AASHTO T-180. AND STABILIZED TO A SCHEDULING ANY SUB-GRADE INSPECTION.
- TESTING
- SPECIFIED ON THE LANDSCAPE PLANS, PREPARED BY OTHERS.
- IS DEMONSTRATED
- CONSTRUCTION SHALL BE AS REQUIRED BY FDOT.

4.DRAINAGE IMPROVEMENTS:

ALL LABOR, MATERIALS AND CONSTRUCTION METHODS SHALL BE IN CONFORMANCE TO THE MINIMUM ENGINEERING AND CONSTRUCTION STANDARDS OF THE CITY OF OKEECHOBEE AND FDOT SPECIFICATIONS. TRENCH EXCAVATION AND BACK-FILLING OPERATIONS SHALL MEET OR EXCEED THE REQUIREMENTS OF FDOT SPECIFICATIONS, SECTION 125. THE CONTRACTOR SHALL PROVIDE THE NECESSARY BACK-FILL COMPACTION TESTING REQUIRED TO DEMONSTRATE COMPLIANCE WITH THIS SECTION. THE PIPE TRENCH SHALL BE DRY WHEN PIPE IS LAID AND THE PIPE SHALL BE BEDDED PER THE DETAILS AND PER FDOT SPECIFICATIONS.

THE CONTRACTOR SHALL COMPLY WITH CHAPTER 90-96, LAWS OF FLORIDA, WHICH REQUIRES THE CONTRACTOR PERFORMING TRENCH EXCAVATIONS OVER FIVE FEET IN DEPTH COMPLY WITH ALL APPLICABLE TRENCH SAFETY STANDARDS AND SHORING REQUIREMENTS AS SET FORTH IN THE OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION'S (OSHA) EXCAVATION AND SAFETY STANDARDS. 29 C.F.R. 19926.650, SUB-PART P AND INCORPORATED AS THE STATE OF FLORIDA STANDARD, AS REVISED AND/OR UPDATED. THE COST OF COMPLIANCE WITH THIS REQUIREMENT SHALL BE INCLUDED AS A SEPARATE LINE ITEM ON THE CONTRACTOR'S BID. OTHERWISE, CONTRACTOR CERTIFIES THAT THE COST OF COMPLIANCE IS INCLUDED IN THE UNIT COST OF ALL ITEMS OF WORK TO WHICH THIS REQUIREMENT APPLIES

- SPECIFICATIONS, SECTION 942.

- PROTECT IT FROM UV LIGHT.

ENGI	NEER C)F RE
	F.I	3.V.
	MAX. S	PACIN
	LINEAR FEET	SQUA FEE
COMPACTED OR STABILIZED GRADE	200	5,00
ROCK BASE		
SHELL ROCK		
ASPHALT		
ALL TESTING SHALL E THE LEFT EDGE OF TH		

ALL MATERIAL SHALL BE REMOVED FROM THE SITE AND SHALL BE LEGALLY DISPOSED OF IN ACCORDANCE WITH ALL LOCAL, STATE AND

A. ASPHALT: PRIME COAT AND TACK COAT FOR BASE COURSE AND BETWEEN LIFTS OF ASPHALT SHALL CONFORM TO THE REQUIREMENTS OF SECTIONS 300-1 THROUGH 300-7 OF THE FDOT SPECIFICATIONS. PRIME COAT SHALL BE APPLIED AT A RATE OF 0.25 GALLONS PER SQUARE YARD AND TACK COAT AT A RATE OF 0.10 GALLONS PER SQUARE YARD, UNLESS

ASPHALT SURFACE COURSE THICKNESS AND MATERIAL SHALL BE AS SHOWN ON THE TYPICAL SECTIONS AND SHALL IN ALL WAYS CONFORM TO THE REQUIREMENTS OF FDOT.

SHALL MEET THE MINIMUM REQUIREMENTS OF FOOT SECTION 911. AS AN ALTERNATE, CEMENTED COQUINA CONFORMING TO FDOT SECTION 915 MAY BE SUBSTITUTED AND SHALL BE SUBJECT TO THE COMPACTION SPECIFICATIONS DETAILED ABOVE AND

MINIMUM FBV OF 50PSI. SUB-GRADE SHALL BE THOROUGHLY ROLLED WITH A PNEUMATIC TIRED ROLLER PRIOR TO

D. VALLEY GUTTER/ F-CURB/D-CURB/FLUSH CURB: SHALL BE CONSTRUCTED PER THE TYPICAL SECTION BY EXTRUDING MACHINE OR FORMS AS SHOWN ON THE PLANS. MINIMUM CONCRETE COMPRESSIVE STRENGTH SHALL BE 3,000PSI AFTER 28 DAYS. SUB-GRADE SHALL BE MOISTENED AT THE TIME CONCRETE IS PLACED TO INSURE A UNIFORMLY DAMP SURFACE. READY-MIX CONCRETE SHALL HAVE A SLUMP OF BETWEEN 2 AND 4 INCHES. NO WATER SHALL BE ADDED TO INCREASE WORKABILITY. TEST CYLINDERS SHALL BE MADE FOR THE STRENGTH TESTING OF EACH BATCH OF CONCRETE FOR AT LEAST 7 AND 28 DAY

E. SOD: A MINIMUM OF A TWO-FOOT WIDE STRIP OF SOD, OR AS OTHERWISE SHOWN ON THE PLANS, SHALL BE PLACED ALONG THE BACK OF CURB OF ALL CONSTRUCTED PAVEMENT TO AID IN PREVENTION OF EROSION AND SOIL STABILITY. SOD SHALL BE PLACED IN CONFORMANCE TO FDOT SECTION 570, 575 AND 981. GENERALLY, THE SODDING REQUIREMENTS SHALL BE AS

F. SEED, FERTILIZE AND MULCH: ALL DISTURBED AREAS SHALL BE STABILIZED WITH SEED, FERTILIZER AND MULCH UPON COMPLETION AND ACCEPTANCE BY ENGINEER OF FINAL GRADING. SEED, FERTILIZER AND MULCH SHALL BE IN CONFORMANCE TO FDOT SECTIONS 570, 575 AND 981. THE CONTRACTOR IS RESPONSIBLE FOR ESTABLISHING A STAND OF GRASS SUFFICIENT TO PREVENT EROSION PRIOR TO REMOVAL OF THE TEMPORARY SILT FENCES. THIS APPLIES ONLY TO THOSE AREAS NOT COVERED BY THE SODDING SPECIFIED IN THE LANDSCAPE PLANS, PREPARED BY OTHERS.

G. TESTING: THE CONTRACTOR SHALL SECURE THE SERVICES OF AN APPROVED INDEPENDENT TESTING LABORATORY TO CONDUCT ALL REQUIRED TESTING ON SUB-GRADE, BASE, ASPHALT AND CONCRETE. LOCATIONS REQUIRED FOR THESE TESTS SHALL BE AS REQUIRED BY THE CITY OF OKEECHOBEE. AND/OR IN THE CASE OF THE TURN-LANE IMPROVEMENTS AS REQUIRED BY THE CITY OF OKEECHOBEE. AT A MINIMUM, TESTING SHALL BE AS RECOMMENDED BY FDOT. SHOULD ANY TESTS FAIL, CONTRACTOR SHALL AT HIS OWN EXPENSE, REPAIR THE DEFICIENCIES AND RETEST THE WORK UNTIL COMPLIANCE WITH THE SPECIFICATIONS

H. TRAFFIC CONTROL: THE INSTALLATION OF TRAFFIC CONTROL DEVICES SHALL BE IN CONFORMANCE TO THE REQUIREMENTS OF THE MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES, THE CITY OF OKEECHOBEE. MAINTENANCE OF TRAFFIC DURING

A. REINFORCED CONCRETE PIPE (RCP): RCP SHALL CONFORM TO THE REQUIREMENTS OF ASTM SPECIFICATIONS C-76, CLASS III, WALL THICKNESS "B", LATEST REVISION. ALL JOINTS SHALL BE SOIL-TIGHT. PIPE GASKET SHALL CONFORM TO FDOT

B. CORRUGATED METAL PIPE (CMP): ALL CMP SHALL BE STEEL, ROUND, HELICAL-WOUND CORRUGATED PIPE CONFORMING TO AASHTO-M 36 AND FDOT SECTION 943. PIPE ENDS AT JOINTS SHALL BE REFORMED TO A MINIMUM OF 2 ANNULAR CORRUGATIONS FOR THE COMPLETE BAND WIDTH. ALL JOINTS SHALL BE SOIL-TIGHT. ALL CONNECTING BANDS SHALL BE CORRUGATED ANNULAR COUPLING BANDS. A NEOPRENE GASKET OF AT LEAST 7 INCHES WIDE BY 3/8 INCH THICK SHALL BE USFD FOR ALL PIPES OF 36-INCH DIAMETER AND SMALLER. LARGER PIPE SIZES REQUIRE GASKETS OF AT LEAST 10-1/2 INCHES IN WIDTH. ALL CMP SHALL BE INSTALLED AT MAXIMUM LENGTHS TO REDUCE THE NUMBER OF JOINTS.

C. CORRUGATED ALUMINUM PIPE (CAP): ALL CAP SHALL BE ALUMINUM ALLOY, ROUND, HELICAL-WOUND CORRUGATED PIPE CONFORMING TO AASHTO-M 196 AND FDOT SECTION 945. PIPE ENDS AT JOINTS SHALL BE REFORMED TO A MINIMUM OF 2 ANNULAR CORRUGATIONS FOR THE COMPLETE BAND WIDTH. ALL JOINTS SHALL BE SOIL-TIGHT. ALL CONNECTING BANDS SHALL BE CORRUGATED ANNULAR COUPLING BANDS. A NEOPRENE GASKET OF AT LEAST 7 INCHES WIDE BY 3/8 INCH THICK SHALL BE USED FOR ALL PIPES OF 36-INCH DIAMETER AND SMALLER. LARGER PIPE SIZES REQUIRE GASKETS OF AT LEAST 10-1/2 INCHES IN WIDTH. ALL CAP SHALL BE INSTALLED AT MAXIMUM LENGTHS TO REDUCE THE NUMBER OF JOINTS.

D. CORRUGATED HIGH DENSITY POLYETHYLENE PIPE (HDPE): ALL HDPE PIPE SHALL BE RESIN CONFORMING TO ASTM D3350 MINIMUM CELL CLASSIFICATION 435400C, ROUND, ONLY ÁNNULAR CORRUGATIONS AND CONFORMING TO FDOT SECTION 948-2.3. ALL JOINTS SHALL BE SOIL-TIGHT. ALL CONNECTING BANDS SHALL BE CORRUGATED ANNULAR COUPLING BANDS. A NEOPRENE GASKET OF AT LEAST 7 INCHES WIDE BY 3/8 INCH THICK SHALL BE USED FOR ALL PIPES OF 36-INCH DIAMETER AND SMALLER. LARGER PIPE SIZES REQUIRE GASKETS OF AT LEAST 10-1/2 INCHES IN WIDTH. ALL HDPE SHALL BE INSTALLED AT MAXIMUM LENGTHS TO REDUCE THE NUMBER OF JOINTS.

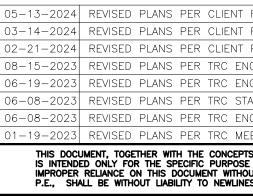
E. CONTECH A-2000 PVC DRAINAGE PIPE (A-2000): ALL A-2000 CORRUGATED PIPE WITH A SMOOTH INTERIOR SHALL CONFORM TO THE REQUIREMENTS OF ASTM DESIGNATION F949 & F794 DUAL WALL CORRUGATED PROFILE (DWCP) PIPE. PIPE AND FITTINGS SHALL BE HOMOGENEOUS THROUGHOUT AND FREE FROM VISIBLE CRACKS, HOLES, FOREIGN INCLUSIONS OR OTHER INJURIOUS DEFECTS. PIPE SHALL BE MANUFACTURED TO 46 PSI STIFFNESS WHEN TESTED IN ACCORDANCE WITH ASTM TEST METHOD D2412. THERE SHALL BE NO EVIDENCE OF SPLITTING, CRACKING OR BREAKING WHEN THE PIPE IS TESTED PER ASTM TEST METHOD D2412 AND F949 SECTION 7.5. THE PIPE SHALL BE MADE OF PVC COMPOUND HAVING A MINIMUM CELL CLASSIFICATION OF 12454B AS DEFINED IN ASTM SPECIFICATION D1784.

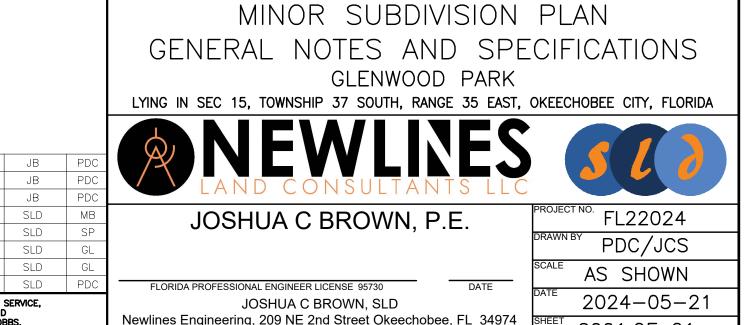
F. PVC DRAINAGE PIPE: PVC DRAINAGE PIPE SHALL BE C-900 WITH PUSH-ON JOINTS (NO GLUED JOINTS) AND SHALL BE AS SPECIFIED FOR SANITARY SEWER CONSTRUCTION, EXCEPT THAT IT SHALL BE WHITE IN COLOR. ANY PORTION OF THE PVC STORM PIPE THAT MAY BE EXPOSED TO SUNLIGHT, SUCH AS ITS OUTLET TO THE DETENTION POND, SHALL BE PAINTED TO

ECC	ECORD INSPECTION REQUIREMENTS					
	DENS	SITY	L.B.	R.	THICKNESS	
ING	MAX. SF	PACING	MAX. SP	ACING	MAX. S	SPACING
JARE ET	LINEAR FEET	SQUARE FEET	LINEAR FEET	SQUARE FEET	LINEAR FEET	SQUARE FEET
000	200	5,000	200	5,000	300	10,000
	300	10,000	300	10,000	300	10,000
	300	10,000			300	10,000
					PER INSP.	PER INSP.
					A POINT 1 OF THE RIC	2" INSIDE GHT EDGE

CONTINUED:

- G. INLETS, MANHOLES, AND JUNCTION BOXES: ALL DRAINAGE INLETS, MANHOLES, AND JUNCTION BOXES SHALL BE PRECAST CONCRETE CONFORMING TO ASTM C-478 AND 64T. ALL CONCRETE SHALL HAVE NOT LESS THAN 4000-PSI COMPRESSIVE STRENGTH AT 28 DAYS. STRUCTURE SECTIONS SHALL BE JOINED WITH A MASTIC SEALING COMPOUND. THE REMAINING SPACE SHALL BE FILLED WITH THE CEMENT MORTAR AND FINISHED SO AS TO PRODUCE A SMOOTH CONTINUOUS SURFACE INSIDE AND OUTSIDE THE WALL SECTIONS. ALL OPENINGS IN PRECAST STRUCTURES SHALL BE CAST AT THE TIME OF MANUFACTURE. HOLES FOR PIPING SHALL BE SIX INCHES LARGER THAN THE OUTSIDE DIAMETER OF THE PROPOSED PIPE. ALL SPACES BETWEEN THE MANHOLE AND THE PIPE SHALL BE COMPLETELY FILLED WITH MORTAR AND FINISHED SMOOTH. MORTAR USED FOR CONCRETE STRUCTURES SHALL CONFORM TO M C-270. MORTAR MATERIAL SHALL BE MIXED ONE PART TYPE 2 PORTLAND CEMENT TO TWO PARTS AGGREGATE BY VOLUME. PORTLAND CEMENT SHALL CONFORM TO ASTM C-144 AND AGGREGATE SHALL CONFORM TO ASTM C-144. THE CONTRACTOR SHALL FURNISH THE ENGINEER WITH SHOP DRAWINGS OF ALL PRECAST STRUCTURES FOR HIS APPROVAL PRIOR TO FABRICATION. SHOP DRAWINGS SHALL SHOW ALL DIMENSION, REINFORCING STEEL AND SPECIFICATIONS. STORM MANHOLES SHALL BE CONSTRUCTED WITH A TRAFFIC BEARING CAST-IRON SLOTTED GRATE.
- H. TRENCH BACKFILL SHALL BE AS SHOWN IN THE DRAINAGE DETAILS. IN ADDITION, TESTING UNDER PAVED AREAS SHALL BE AS FOLLOWS: ONE TEST LOCATION MIDWAY BETWEEN STRUCTURES AND ONE TEST LOCATION ADJACENT TO EACH STRUCTURE. ENGINEER MAY REQUEST ADDITIONAL LOCATIONS. TESTING IN EACH LOCATION SHALL BEGIN IN THE FIRST FOOT ABOVE THE CULVERT WITH TESTS EVERY TWO FEET TO WITHIN TWO FEET OF THE SUB-GRADE. DENSITY SHALL BE TO 100 PERCENT OF MAXIMUM AS DETERMINED BY AASHTO T-99.
- I. CONTROL STRUCTURES: SHALL BE CONSTRUCTED PER THE ABOVE SPECIFICATIONS FOR INLETS, MANHOLES, AND JUNCTION BOXES EXCEPT THAT THE STRUCTURES SHALL INCLUDE THE BLEEDERS AND WEIRS AS SHOWN ON THE DETAIL.
- J. RIP-RAP ENERGY DISSIPATERS: SHALL BE CONSTRUCTED PER THE DETAILS AND AS SHOWN ON THE DRAWINGS AT THE CONTROL STRUCTURES AND THE DOWNSTREAM BUBBLE-UP STRUCTURES. THE RUBBLE SHALL BE OF MATERIAL AND PLACED IN ACCORDANCE TO FDOT SECTION 530-2.3 (MATERIAL) AND FDOT SECTION 530-3.3 (CONSTRUCTION METHODS). SHOULD BROKEN CONCRETE BE USED AS THE RUBBLE, IT SHALL BE FREE FROM REINFORCING BARS OR WIRE MESH. THE CONTRACTOR SHALL USE CARE IN THE PLACEMENT OF THE STONE SO THAT IT IS NOT DROPPED ON THEW FABRIC IN SUCH A FASHION THAT TEARS THE FABRIC. THE FABRIC SHALL BE AS SPECIFIED IN FDOT SECTION 985 AND SHALL BE OF THE WOVEN DESIGN AND AS SPECIFIED FOR USE WITH RIPRAP PER TABLE 1 OF THIS SECTION. THE BEDDING STONE SHALL BE OF THE TYPE TYPICALLY USED FOR DRAINFIELD ROCK AND SHALL MEET THE REQUIREMENTS OF FDOT FOR DRAINFIELD ROCK.

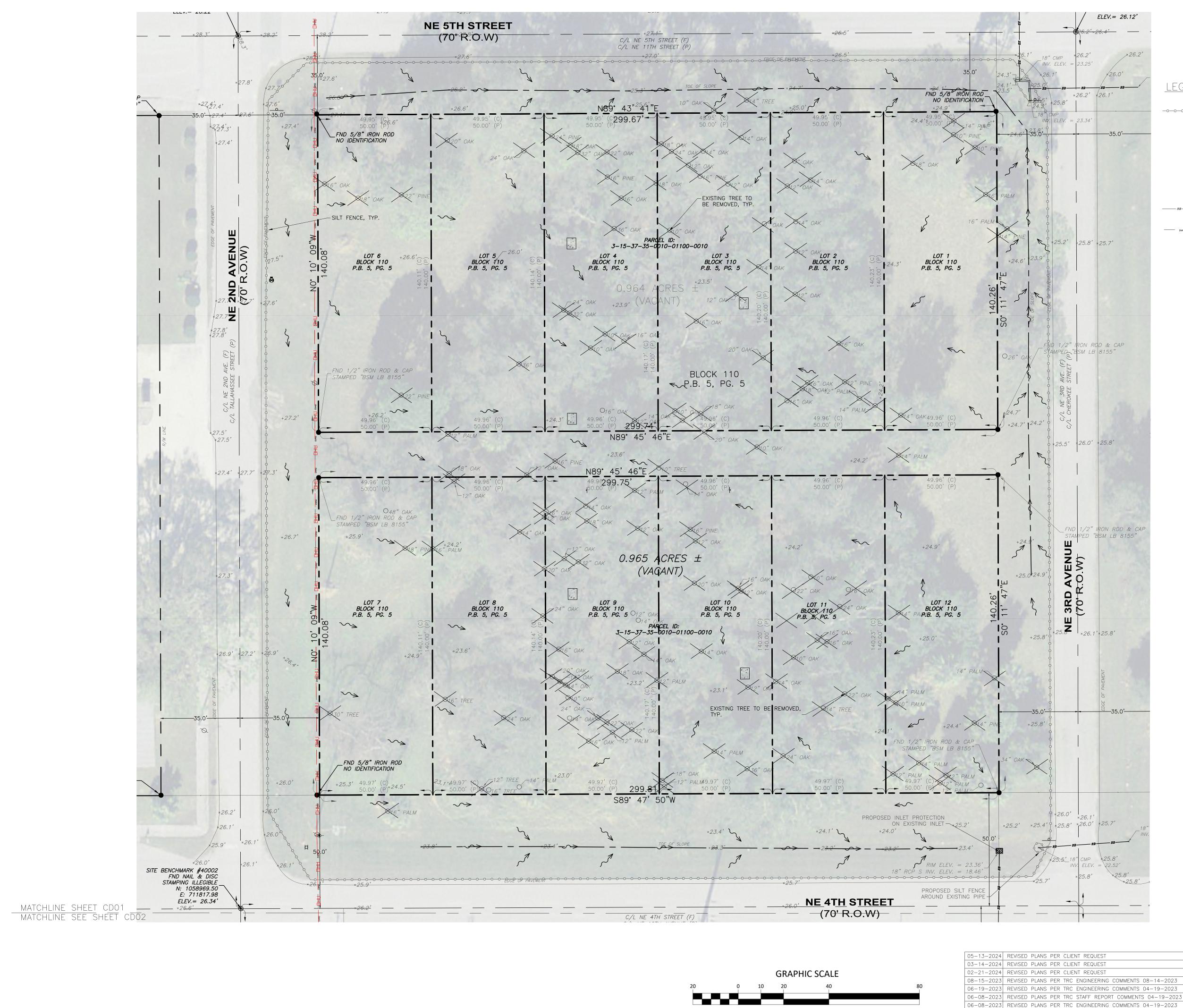

LOT COVERAGE CALCULATIONS

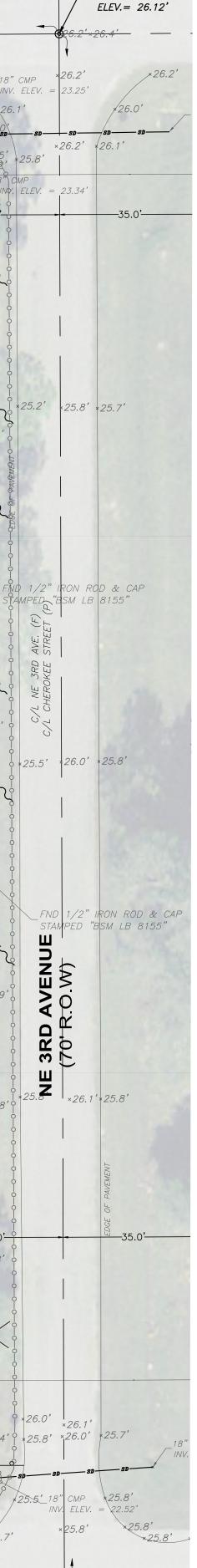

	BLOCK 110			BLOCK 121	
Duilding	24279.99	SF	Building	24279.99	SF
Building	0.56	AC		0.56	AC
	90043	SF	Lot	94498	SF
Lot	2.07	AC		2.17	AC
Building Coverage	26.96	%	Building Coverage	25.69	%

IMPERVIOUS SURFACE CALCULATIONS

	BLOCK 110	
Pervious	41506.19	SF
Pervious	0.95	AC
Lot	90043	SF
Lot	2.07	AC
Imp	48536.81	SF
Imp	1.11	AC
Cover	53.90	%

	BLOCK 121	
Pervious	45189.27	SF
Pervious	1.04	AC
1.5.5	94498	SF
Lot	2.17	AC
lman	49308.73	SF
Imp	1.13	AC
Cover	52.18	%



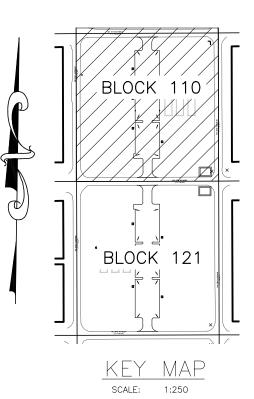

863-824-7644

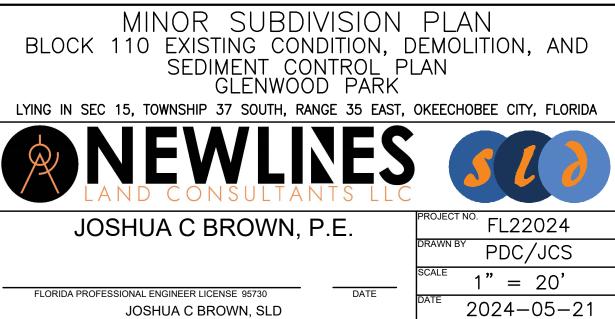
C001 OF 21

REQUEST	JB	PD
REQUEST	JB	PD
REQUEST	JB	PD
GINEERING COMMENTS 08-14-2023	SLD	ME
GINEERING COMMENTS 04-19-2023	SLD	SF
FF REPORT COMMENTS 04-19-2023	SLD	GL
GINEERING COMMENTS 04-19-2023	SLD	GL
ETING	SLD	PD
3 AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF AND CLIENT FOR WHICH IT WAS PREPARED. REUSE OF AND JT WRITTEN AUTHORIZATION AND ADOPTION BY STEVEN L. DOI S ENGINEERING & SURVEY AND STEVEN L. DOBBS ENGINEERI) BBS,	

(IN FEET) 1 inch = 20 ft.

LEGEND	
0-0-0-0-0-0-0-0-0-0-	PR
	EXI: BE
	PR(PR(
SD SD	EXI
OVHD OVHD	EXI: WIR
	NOTE LOCA THE TRAN BY F


OPOSED SILT FENCE ISTING TREE TO REMOVED

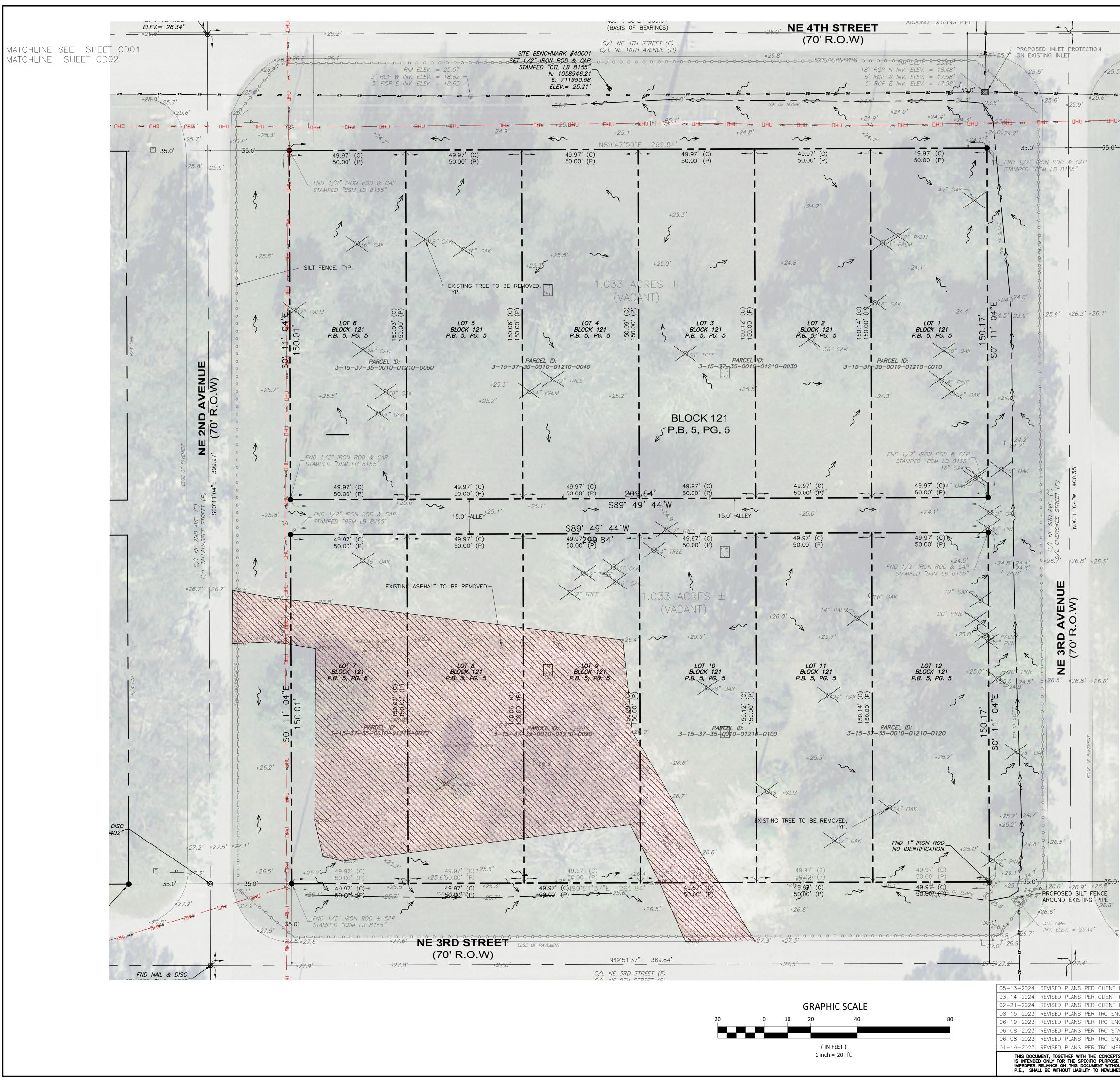

> ROPOSED INLET ROTECTION

(ISTING STORM DRAIN

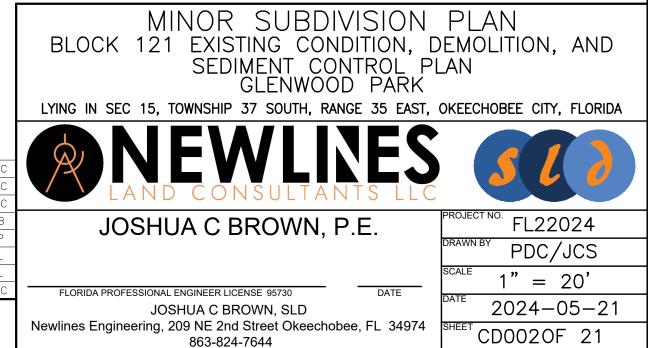
ISTING OVERHEAD

CATION OF SILT FENCE TO BE MODIFIED BY E CONTRACTOR TO PREVENT OFFSITE ANSPORTATION OF SEDIMENT AS WARRANTED FIELD CONDITIONS.

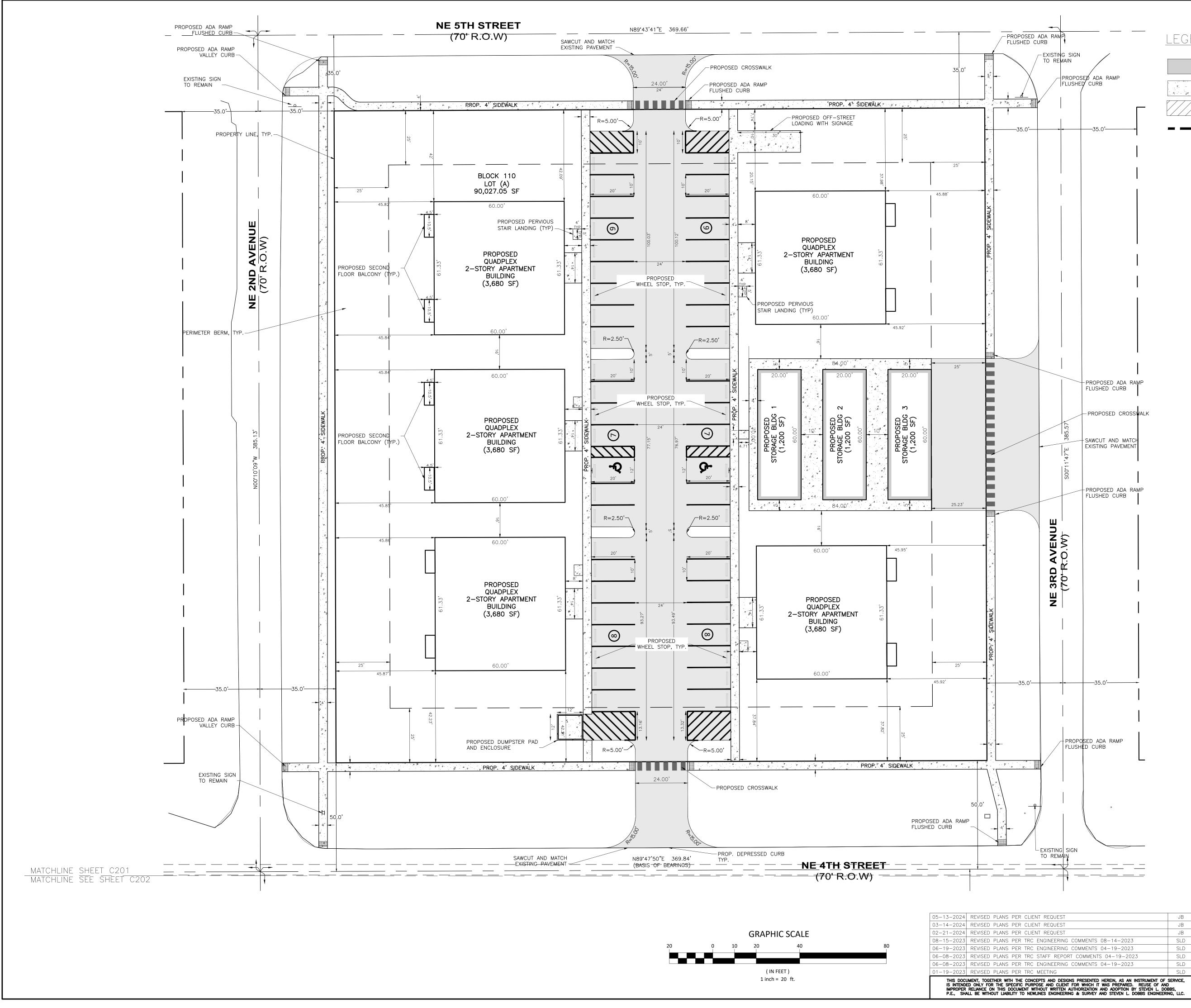
SLD SLD SLD SLD SLD 1–19–2023 REVISED PLANS PER TRC MEETIN THIS DOCUMENT, TOGETHER WITH THE CONCEPTS AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF SERVICE, IS INTENDED ONLY FOR THE SPECIFIC PURPOSE AND CLIENT FOR WHICH IT WAS PREPARED. REUSE OF AND IMPROPER RELIANCE ON THIS DOCUMENT WITHOUT WRITTEN AUTHORIZATION AND ADOPTION BY STEVEN L. DOBBS, P.E., SHALL BE WITHOUT LIABILITY TO NEWLINES ENGINEERING & SURVEY AND STEVEN L. DOBBS ENGINEERING, LLC.

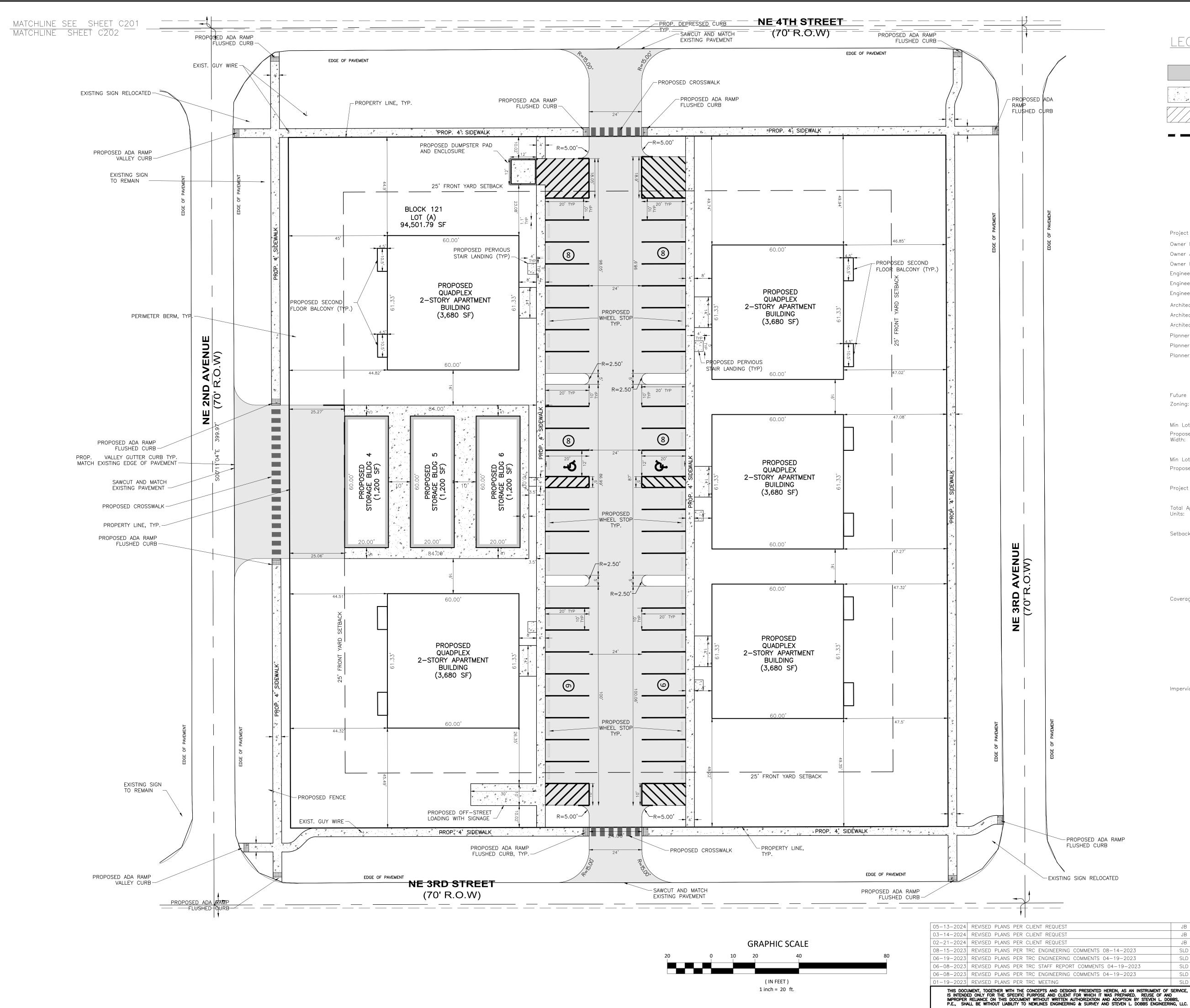

JB

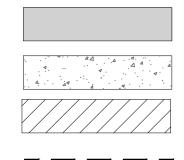
JB

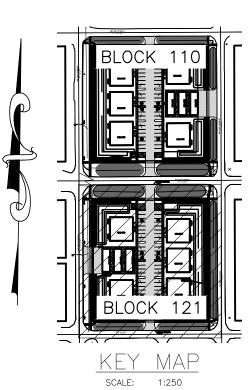

JB

Newlines Engineering, 209 NE 2nd Street Okeechobee, FL 34974 863-824-7644

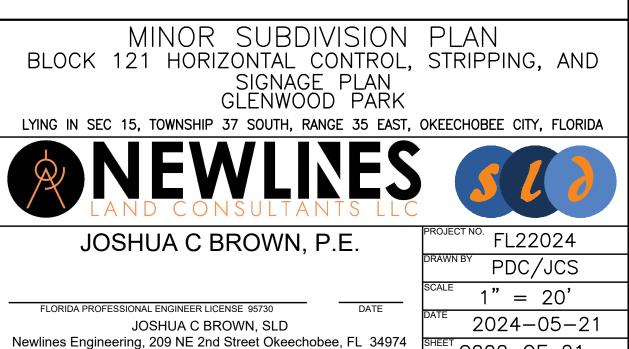

CD0010F 21


LEGEND			- F
-0	PROPOSED SILT FENCE	BLOCK 110	
\searrow	EXISTING TREE TO BE REMOVED		
	EXISTING ASPHALT TO BE REMOVED		_
	PROPOSED INLET PROTECTION		
SD SD SD	EXISTING STORM DRAIN		L
оунр оунд	EXISTING OVERHEAD WIRE	KEY MAP scale: 1:250	

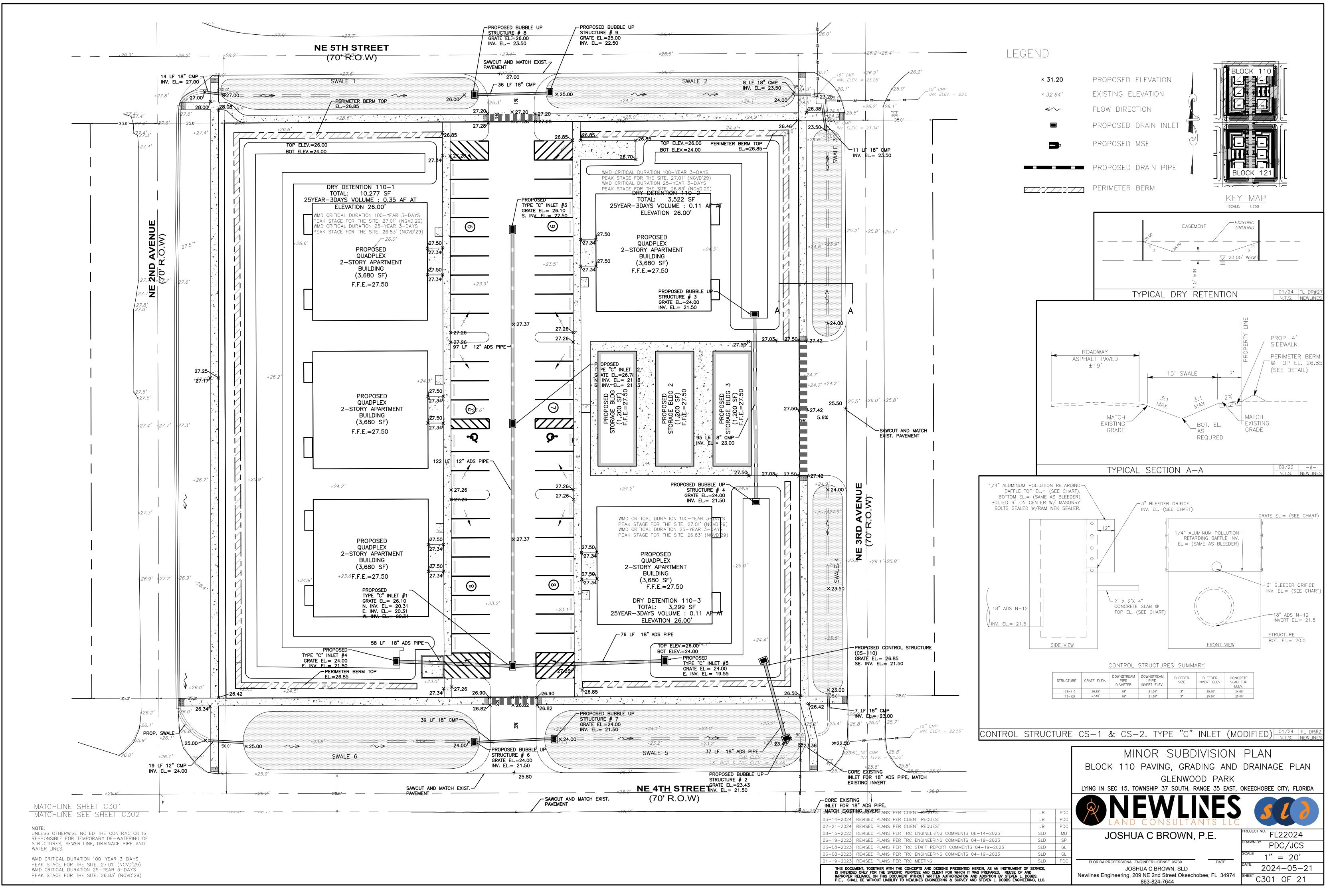

AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF AND CLIENT FOR WHICH IT WAS PREPARED. REUSE OF AND IT WRITTEN AUTHORIZATION AND ADOPTION BY STEVEN L. DOI S ENGINEERING & SURVEY AND STEVEN L. DOBBS ENGINEERI) BBS,	1
ETING	SLD	PD
GINEERING COMMENTS 04-19-2023	SLD	GL
FF REPORT COMMENTS 04-19-2023	SLD	GL
GINEERING COMMENTS 04-19-2023	SLD	SF
GINEERING COMMENTS 08-14-2023	SLD	ME
REQUEST	JB	PD
REQUEST	JB	PD
REQUEST	JB	PD

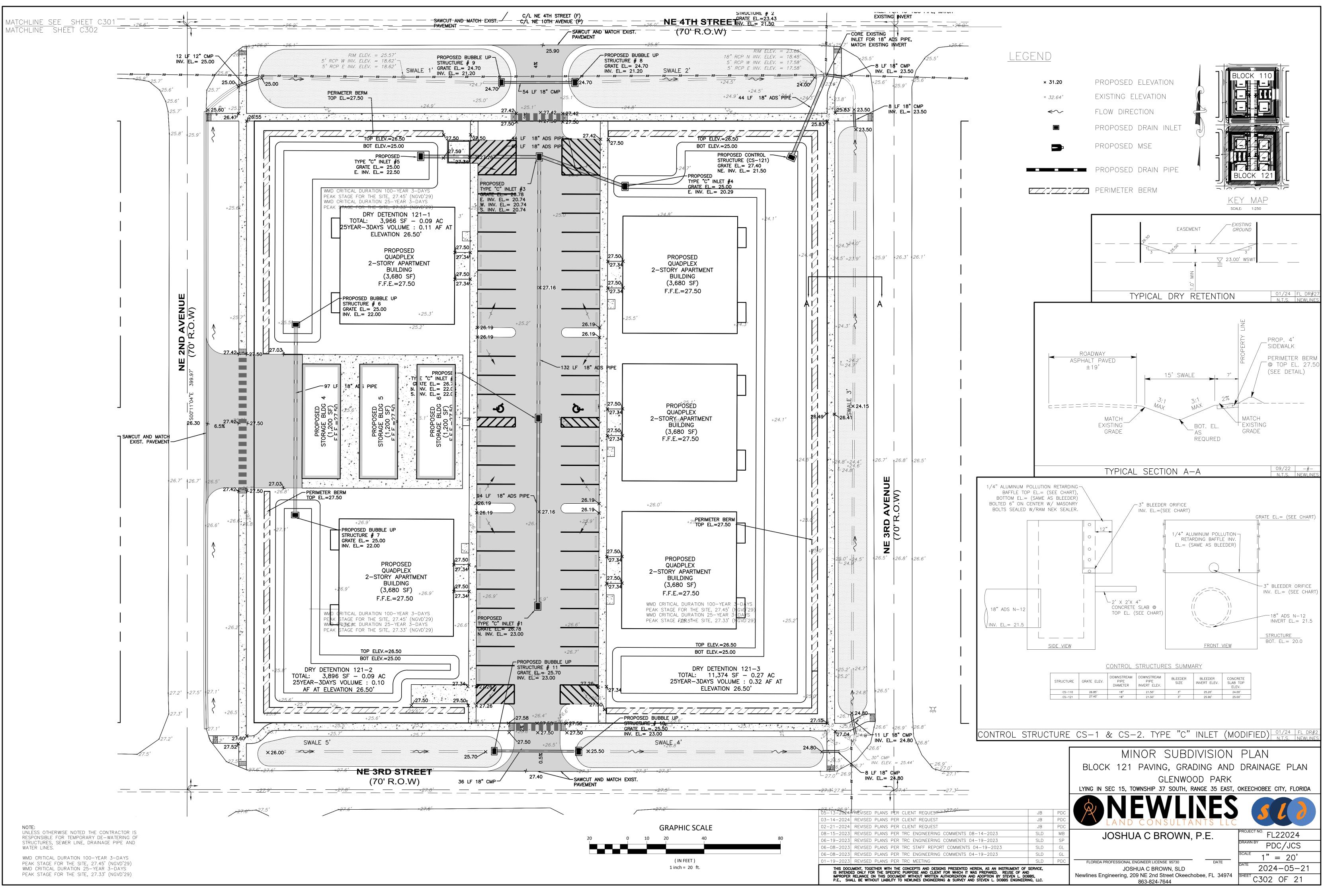

A RAM	P		LEGEND		J BLOCK 110
XISTIN O REI	G SIGN MAIN				
_	PROPOS FLUSHE	SED ADA RAMP D CURB		ASPHALT PAVEMENT	
· · ·				CONCRETE WALKWAY	
				PERIMETER BERM	
	-	35.0'		PERIMETER BERM	
					KEY MAP
			Project Name: Owner Name:	Glenwood Park, LLC Mitch Stephens	SCALE: 1:250
			Owner Address: Owner Phone:	17705 Middlebrook Way, Boca 919-201-9913	a Raton, FL 33496
			Engineer Name: Engineer Address:	Newlines/SLD Engineering, LLC 209 NE 2nd St, Okeechobee,	
			Engineer Phone: Architect Name:	863-824-7644 N/A	
			Architect Address: Architect Phone:		
			Planner Name: Planner Address:	N/A	
			Planner Phone		
			Future Land Use:	Block 110	Multifamily
		- PROPOSED ADA RAMP	Zoning:		Multifamily
		FLUSHED CURB	Min Lot Width: Proposed lot Width:	100.0 300.0	
	27		Min Lot Size:	7,495	
	385.57	- SAWCUT AND MATCH EXISTING PAVEMENT	Proposed lot size:	90,043	sf
	S00°11'47"E		Project Size	2.07	AC
	soo	- PROPOSED ADA RAMP	Total Apartment Units:	5 Quadplexs	
		FLUSHED CURB	Setbacks:		Req Provided
NUE				E Front S Side	25 26.39' 20 37.82
VEN				N Side W Rear	20 37.98' 25 45.82'
<			Coverage	Lot size:	90,043 sf 100%
E 3RD				Bldg:	24,280 sf 26.96%
Ш Z		I			21,200 01 20.00%
				Total Lot Coverage	26.96% (50% max)
			Impervious Area		
				Allowable Impervious Area: Proposed ISR:	60% 53.90%
				Total Impervious:	1.11 ac
				(Bldgs., Sidewaks/Driveways)	
_		SED ADA RAMP ED CURB			
		×			
	SIGN			MINOR SL	JBDIVISION PLAN
REM.			BLO	CK 110 HORIZON	TAL CONTROL, STRIPPING, AND GNAGE PLAN NWOOD PARK
	'		LYING		NWOOD PARK Duth, range 35 east, okeechobee city, florida
EQUES	ST		JB PDC	NEW	
EQUES	ST ST	MENTS 08-14-2023	JB PDC JB PDC SLD MB	LAND CONSU	LTANTS LLC
INEERI FF REF	NG COM Port CC	MENTS 04-19-2023 DMMENTS 04-19-2023	SLD SP SLD GL	JOSHUA C BRO	WN, P.E. FL22024 DRAWN BY PDC/JCS
TING		MENTS 04-19-2023		DA PROFESSIONAL ENGINEER LICENSE 9573 JOSHUA C BROWN, \$	sld 2024-05-21
ENGINE	EN AUTHOR ERING &	RESENTED HEREIN, AS AN INSTRUMENT (WHICH IT WAS PREPARED. REUSE OF RIZATION AND ADOPTION BY STEVEN L. SURVEY AND STEVEN L. DOBBS ENGINE	DOBBS, Newlines ERING, LLC.	Engineering, 209 NE 2nd Street 863-824-7644	

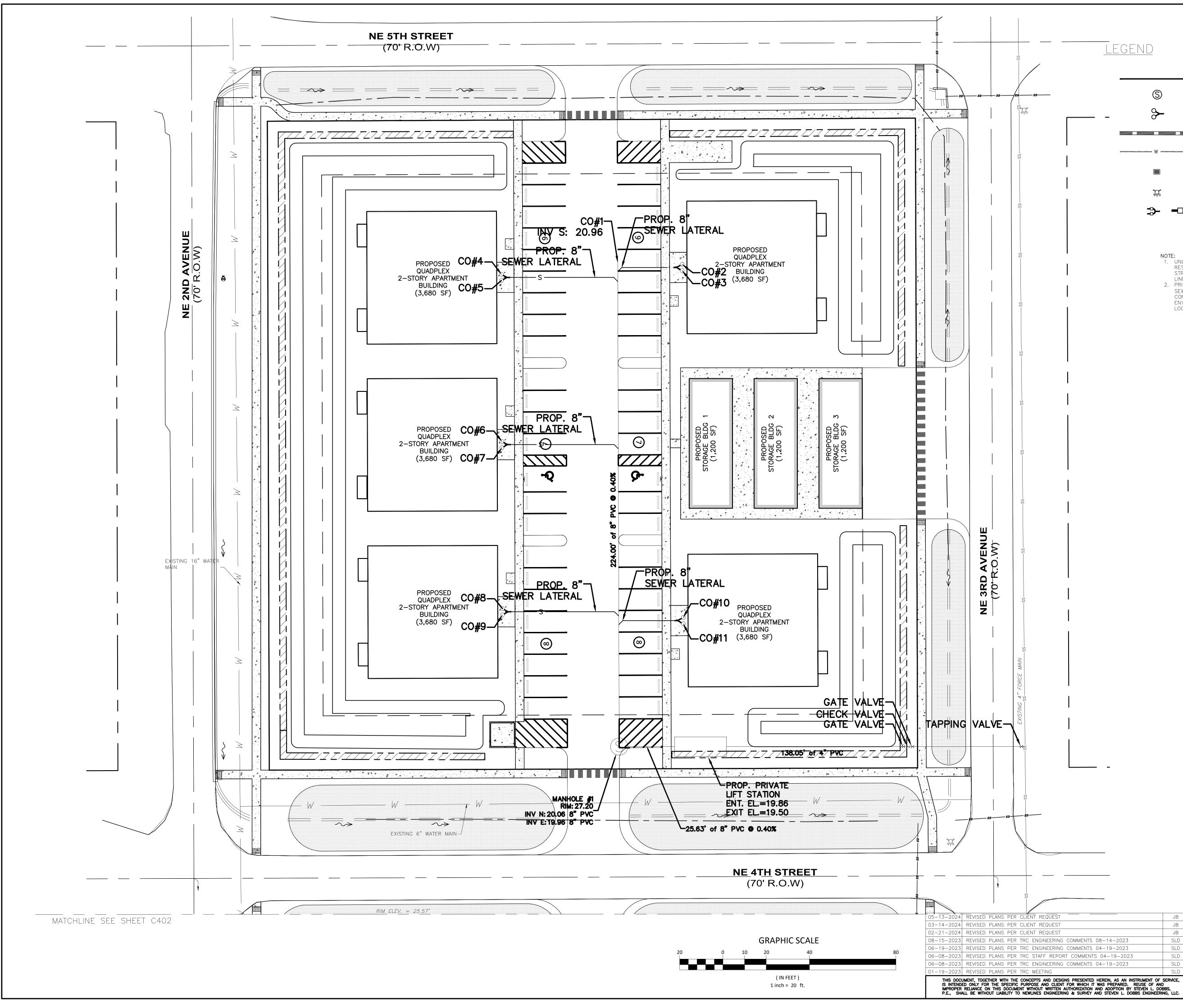
<u>LEGEND</u>



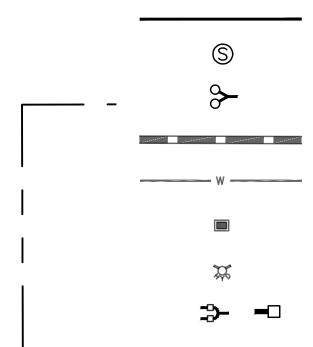
ASPHALT PAVEMENT CONCRETE WALKWAY PERIMETER BERM PERIMETER BERM

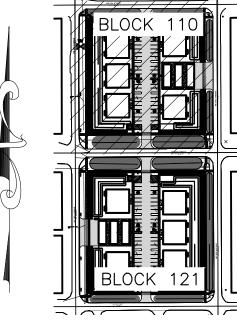

Project Name: Owner Name:	Glenwood Park, LLC Mitch Stephens				
Owner Address:	17705 Middlebrook Way, Boca	Raton, FL	33496		
Owner Phone:	919-201-9913				
Engineer Name: Engineer Address:	Newlines/SLD Engineering, LLC 209 NE 2nd St, Okeechobee,				
Engineer Phone:	863-824-7644	FL 34972			
Architect Name:	N/A				
Architect Address:					
Architect Phone:					
Planner Name: Planner Address:	N/A				
Planner Phone					
	Block 121				
Future Land Use: Zoning:		Multifamily Multifamily			
Zonnig.		Multinumy			
Min Lot Width:	100.0	ft			
Proposed lot Width:	300.0	ft			
Min Lot Size:	7,495	sf			
Proposed lot size:	94,498				
Project Size	2.17	AC			
Tatal Assutated					
Total Apartment Units:	5 Quadplexs				
Setbacks:		Req	Provided		
	W Front	2	5 25.0	06'	
	N Side	2			
	S Side	2			
	E Rear	2	5 46.8	35	
Coverage					
	Lot size:	94,498 s	f 100)%	
	Bldg:	24,280 s	f 26.96	5%	
	Total Lot Coverage		25.69	9% (50% max)	
Impervious Area					
	Allowable Impervious Area:			60%	
	Proposed ISR:			52.18%	
	Total Impervious:		1.	13 ac	
	(Bldgs., Sidewaks/Driveways)				


ND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF ND CLIENT FOR WHICH IT WAS PREPARED. REUSE OF AND WRITTEN AUTHORIZATION AND ADOPTION BY STEVEN L. DOI)	
NG	SLD	PDC
NEERING COMMENTS 04-19-2023	SLD	GL
REPORT COMMENTS 04-19-2023	SLD	GL
NEERING COMMENTS 04-19-2023	SLD	SP
NEERING COMMENTS 08-14-2023	SLD	MB
QUEST	JB	PDC
QUEST	JB	PDC
QUEST	JB	PDC



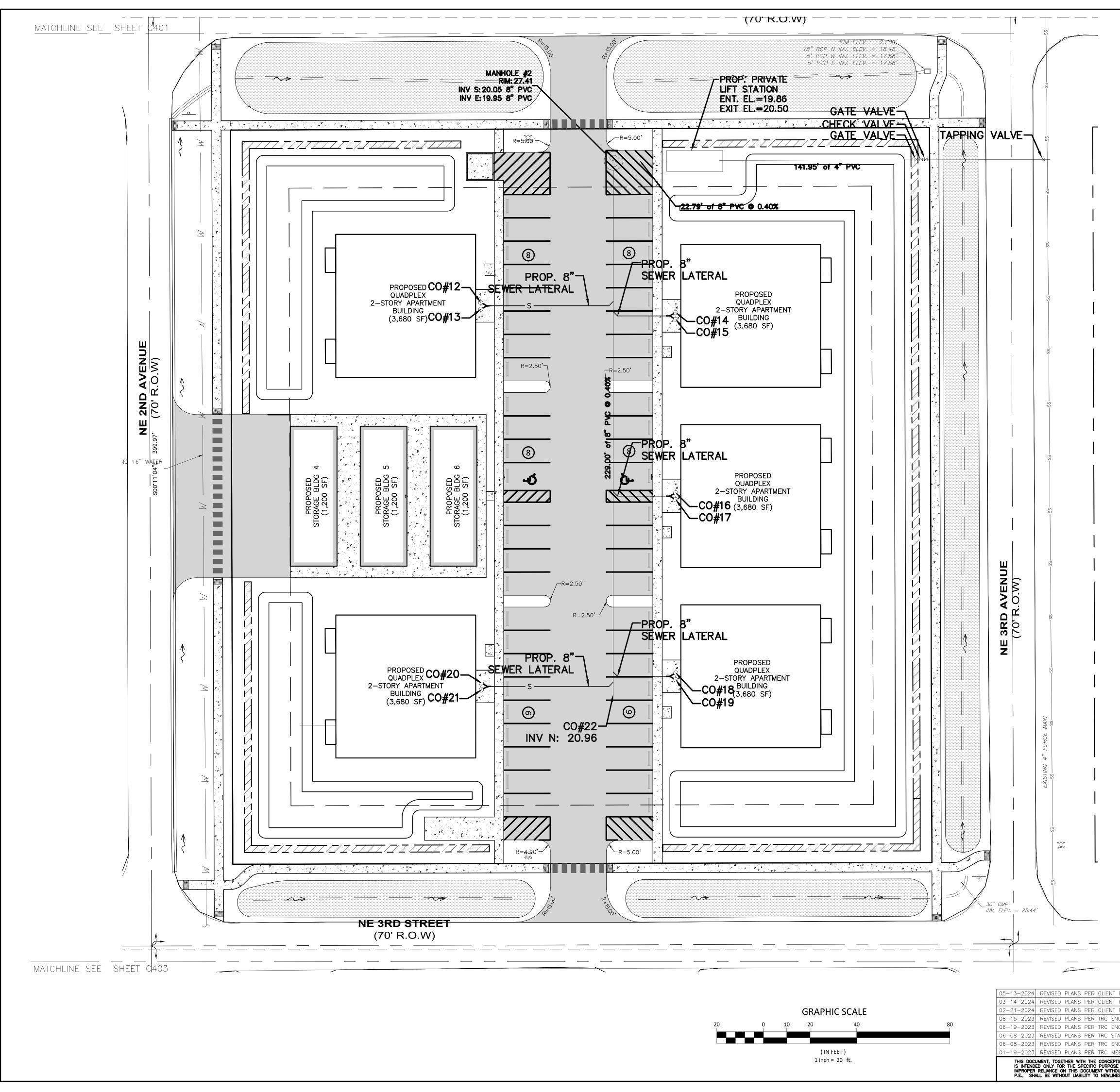
863-824-7644


C202 OF 21



LEGEND

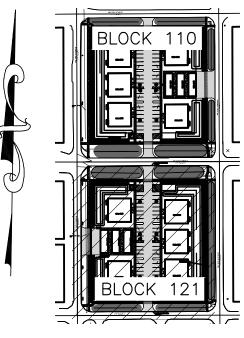
-	PROPOSED	SEWERI	_INE
	PROPOSED	SEWER	MANHOLE
	PROPOSED SEWER CLE		RY
	PROPOSED	DRAIN	PIPE
	PROPOSED	WATERL	INE
	PROPOSED	DRAIN	INLET
	PROPOSED	FIRE H	YDRANT
	PROPOSED	WATER	METER

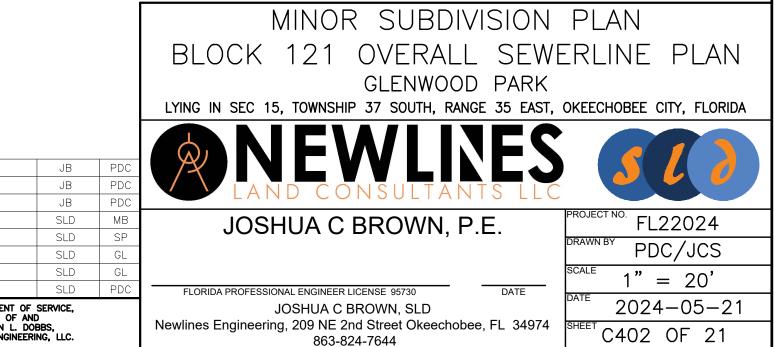


KEY MAP SCALE: 1:250

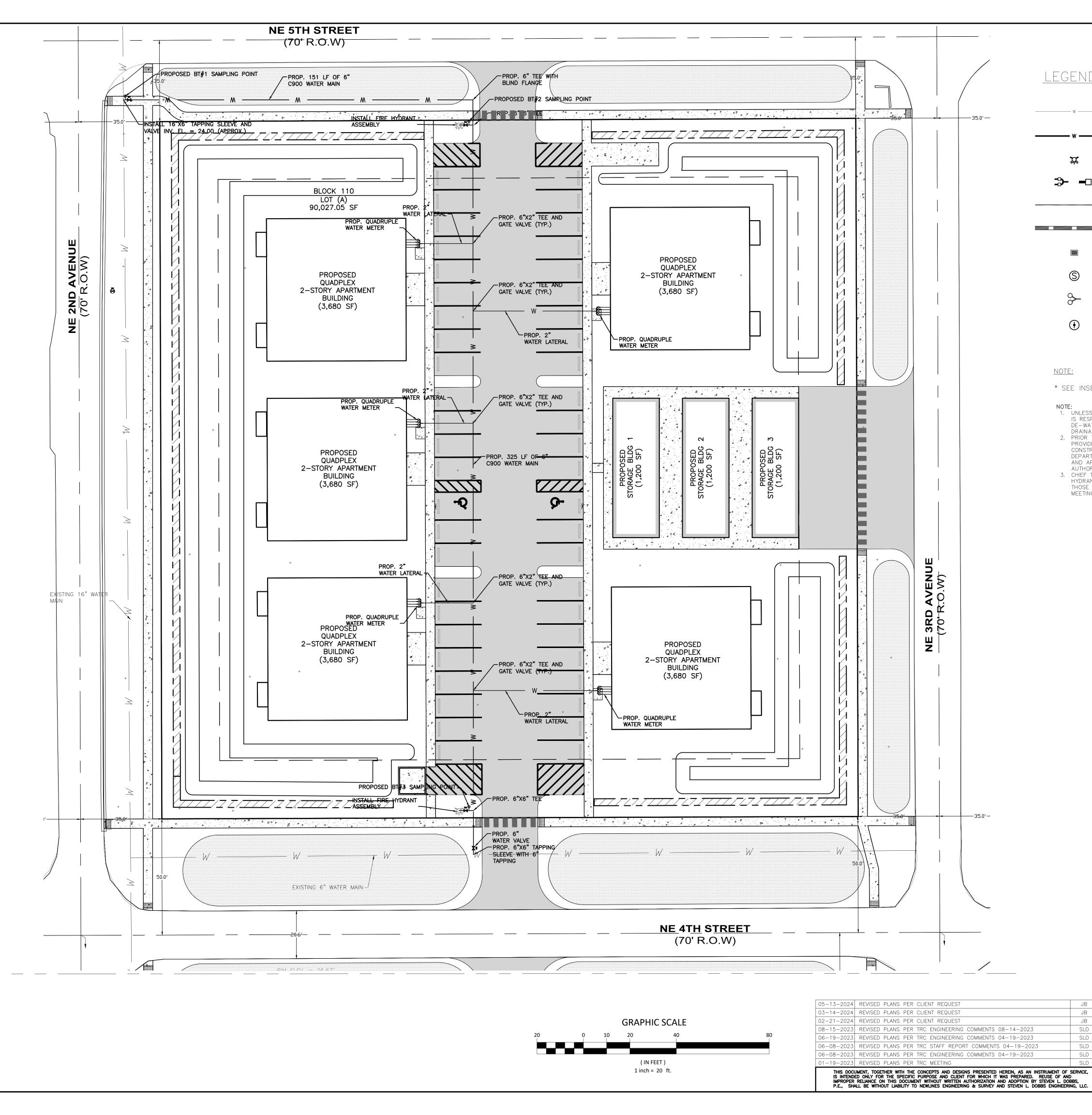
NOTE: 1. UNLESS OTHERWISE NOTED THE CONTRACTOR IS RESPONSIBLE FOR TEMPORARY DE-WATERING OF STRUCTURES, SEWER LINE, DRAINAGE PIPE AND WATER

LINES. 2. PRIOR TO CONSTRUCTION COMMENCEMENT, PROVIDE A SEWAGE COLLECTION/TRANSMISSION SYSTEM CONSTRUCTION PERMIT FROM FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION AND APPROVAL FROM LOCAL SEWER AUTHORITY.

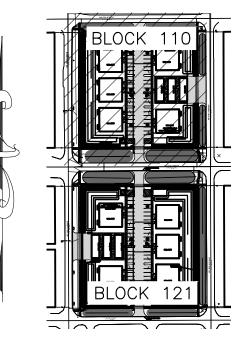

			MINOR SUBDIVISION PLAN				
			BLOCK 110 OVERALL SEWERLINE PLAN				
			GLENWOOD PARK				
			LYING IN SEC 15, TOWNSHIP 37 SOUTH, RANGE 35 EAST, OKEECHOBEE CITY, FLORIDA				
	JB	PDC PDC					
	JB	PDC	LAND CONSULTANTS LLC				
IENTS 08-14-2023	SLD	MB	JOSHUA C BROWN, P.E. PROJECT NO. FL22024				
IENTS 04-19-2023	SLD	SP					
MMENTS 04-19-2023	SLD	GL	PDC/JCS				
IENTS 04-19-2023	SLD	GL	SCALE 1" = 20'				
	SLD	PDC	FLORIDA PROFESSIONAL ENGINEER LICENSE 95730 DATE				
SENTED HEREIN, AS AN INSTRUMENT OF S			JOSHUA C BROWN, SLD 2024-05-21				
VHICH IT WAS PREPARED. REUSE OF AND IZATION AND ADOPTION BY STEVEN L. DOBBS, SURVEY AND STEVEN L. DOBBS ENGINEERING, LLC.			Newlines Engineering, 209 NE 2nd Street Okeechobee, FL 34974 863-824-7644 SHEET C401 OF 21				


LEGEND

	PROPOSED SEWERLINE
S	PROPOSED SEWER MANHOLE
∻	PROPOSED SANITARY SEWER CLEANOUT
	PROPOSED DRAIN PIPE
W	PROPOSED WATERLINE
	PROPOSED DRAIN INLET
X	PROPOSED FIRE HYDRANT
⇒ -□	PROPOSED WATER METER


NOTE: UNLESS OTHERWISE NOTED THE CONTRACTOR IS RESPONSIBLE FOR TEMPORARY DE-WATERING OF STRUCTURES, SEWER LINE, DRAINAGE PIPE AND WATER LINES.

KEY MAP Scale: 1:250


REQUEST	JB	P
REQUEST	JB	P
REQUEST	JB	P
GINEERING COMMENTS 08-14-2023	SLD	N
GINEERING COMMENTS 04-19-2023	SLD	
AFF REPORT COMMENTS 04-19-2023	SLD	
GINEERING COMMENTS 04-19-2023	SLD	
ETING	SLD	P
S AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF AND CLIENT FOR WHICH IT WAS PREPARED. REUSE OF AND JT WRITTEN AUTHORIZATION AND ADOPTION BY STEVEN L. DOI S ENGINEERING & SURVEY AND STEVEN L. DOBBS ENGINEERI) BBS,	

MATCHLINE SEE SHEET C402

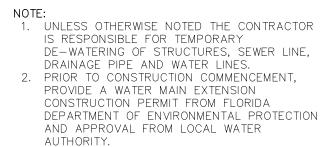
LEGEND

w	EXISTING WATERLINE
w	PROPOSED WATERLINE
*	PROPOSED FIRE HYDRANT
⇒0	PROPOSED WATER METER
	PROPOSED SEWERLINE
	PROPOSED DRAIN PIPE
	PROPOSED DRAIN INLET
S	PROPOSED SEWER MANHOLE
~	PROPOSED SANITARY SEWER CLEANOUT
\odot	PROPOSED TEMPORARY Sampling point

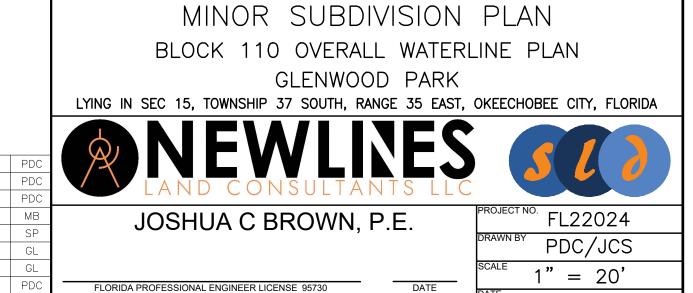
<u>key map</u> SCALE: 1:250

<u>NOTE:</u>

JB


JB

SLD SLD SLD

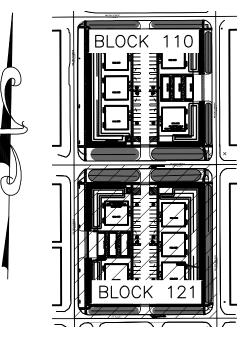

SLD SLD

JB

* SEE INSET "A" ON SHEET C401

3. CHIEF TO CONFIRM WHETHER THE PROPOSED HYDRANTS LOCATIONS ARE CONSISTENT WITH THOSE AGREED TO IN PRE APPLICATION MEETING.

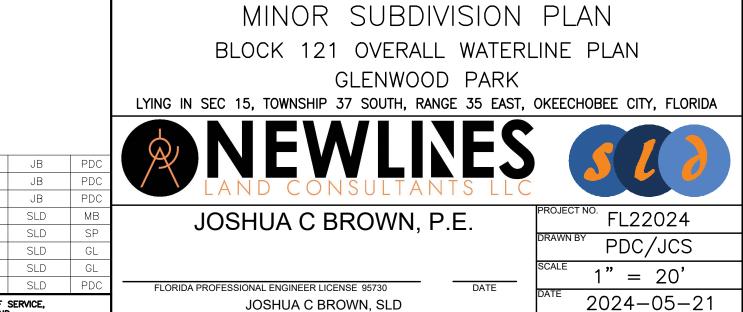
2024-05-21


[•]C501 OF 21

JOSHUA C BROWN, SLD
Newlines Engineering, 209 NE 2nd Street Okeechobee, FL 3497
863-824-7644

LEGEND

W	EXISTING WATERLINE
w	PROPOSED WATERLINE
¥	PROPOSED FIRE HYDRANT
≫0	PROPOSED WATER METER
	PROPOSED SEWERLINE
	PROPOSED DRAIN PIPE
	PROPOSED DRAIN INLET
S	PROPOSED SEWER MANHOLE
~	PROPOSED SANITARY SEWER CLEANOUT
(\bullet)	PROPOSED TEMPORARY SAMPLING POINT

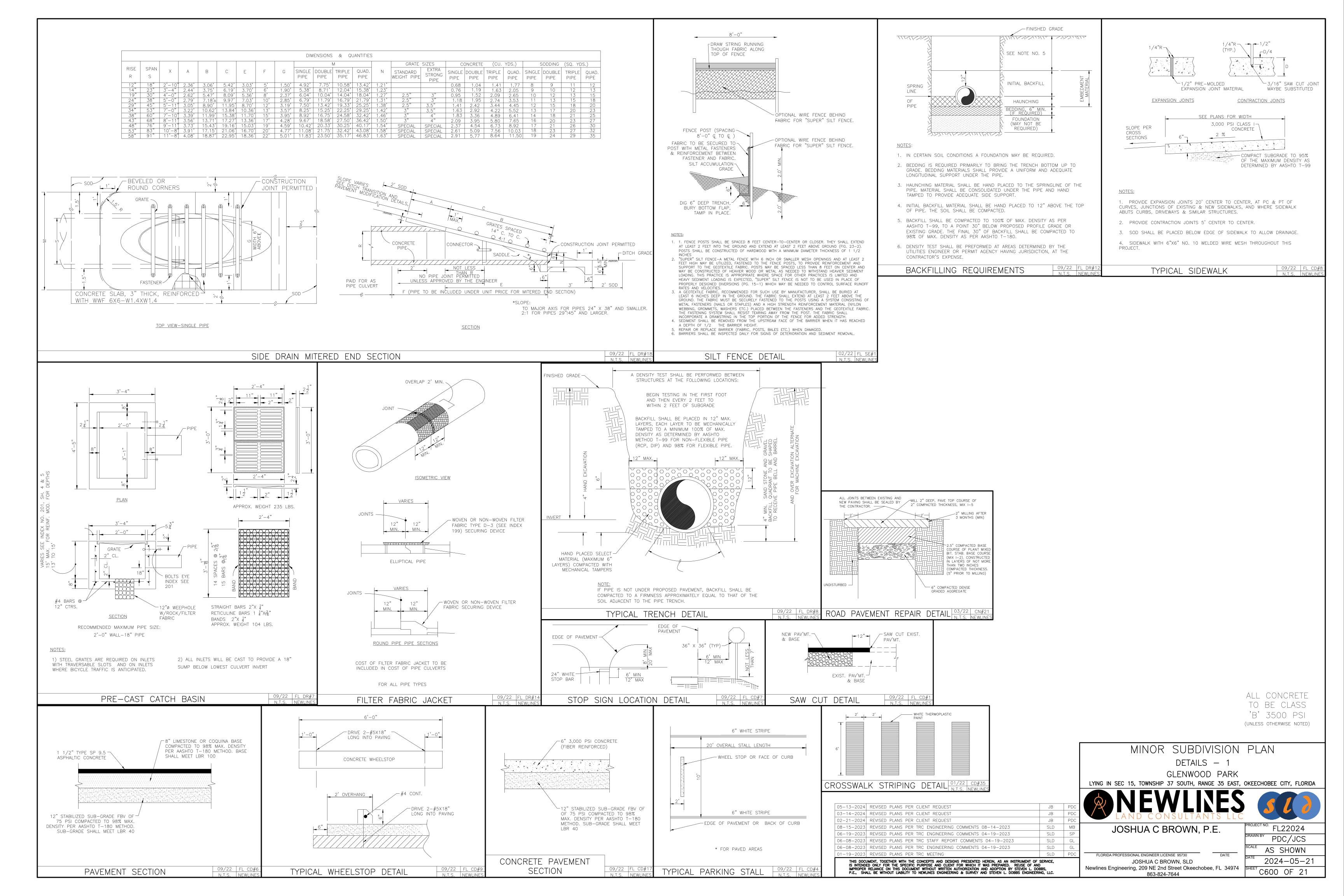

<u>key map</u> SCALE: 1:250

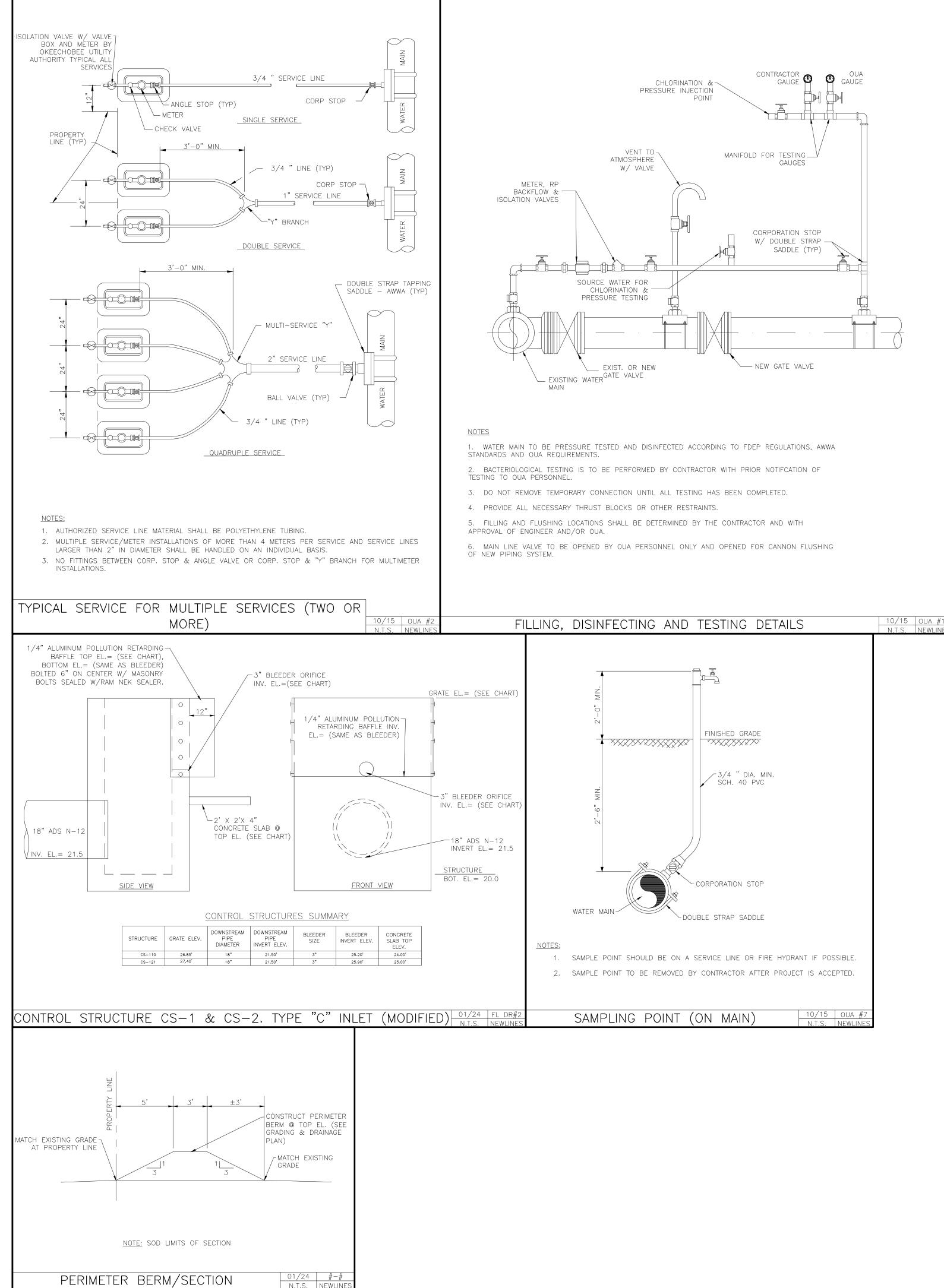
<u>NOTE:</u>

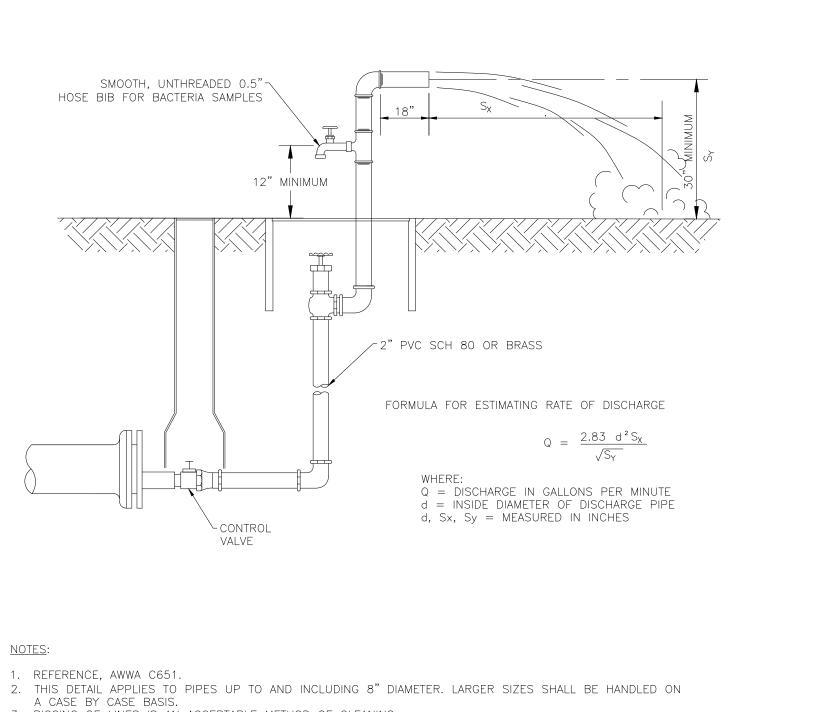
* SEE INSET "A" ON SHEET C401

NOTE: 1. UNLESS OTHERWISE NOTED THE CONTRACTOR IS RESPONSIBLE FOR TEMPORARY DE-WATERING OF STRUCTURES, SEWER LINE, DRAINAGE PIPE AND WATER LINES.

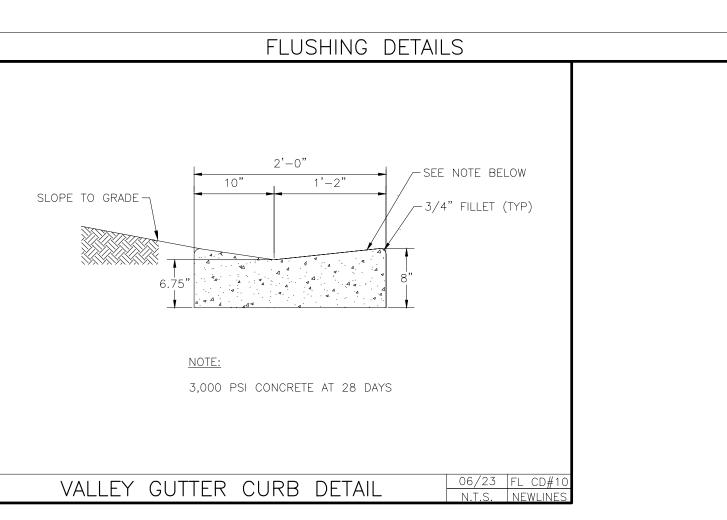
- 2. PRIOR TO CONSTRUCTION COMMENCEMENT, PROVIDE A WATER MAIN EXTENSION CONSTRUCTION PERMIT FROM FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION AND APPROVAL FROM LOCAL WATER
- AUTHORITY. AUTHORITY. 3. CHIEF TO CONFIRM WHETHER THE PROPOSED HYDRANTS LOCATIONS ARE CONSISTENT WITH THOSE AGREED TO IN PRE APPLICATION MEETING.

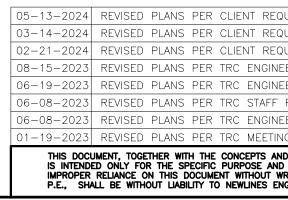



SLD THIS DOCUMENT, TOGETHER WITH THE CONCEPTS AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF SERVICE, IS INTENDED ONLY FOR THE SPECIFIC PURPOSE AND CLIENT FOR WHICH IT WAS PREPARED. REUSE OF AND IMPROPER RELIANCE ON THIS DOCUMENT WITHOUT WRITTEN AUTHORIZATION AND ADOPTION BY STEVEN L. DOBBS, P.E., SHALL BE WITHOUT LIABILITY TO NEWLINES ENGINEERING & SURVEY AND STEVEN L. DOBBS ENGINEERING, LLC.

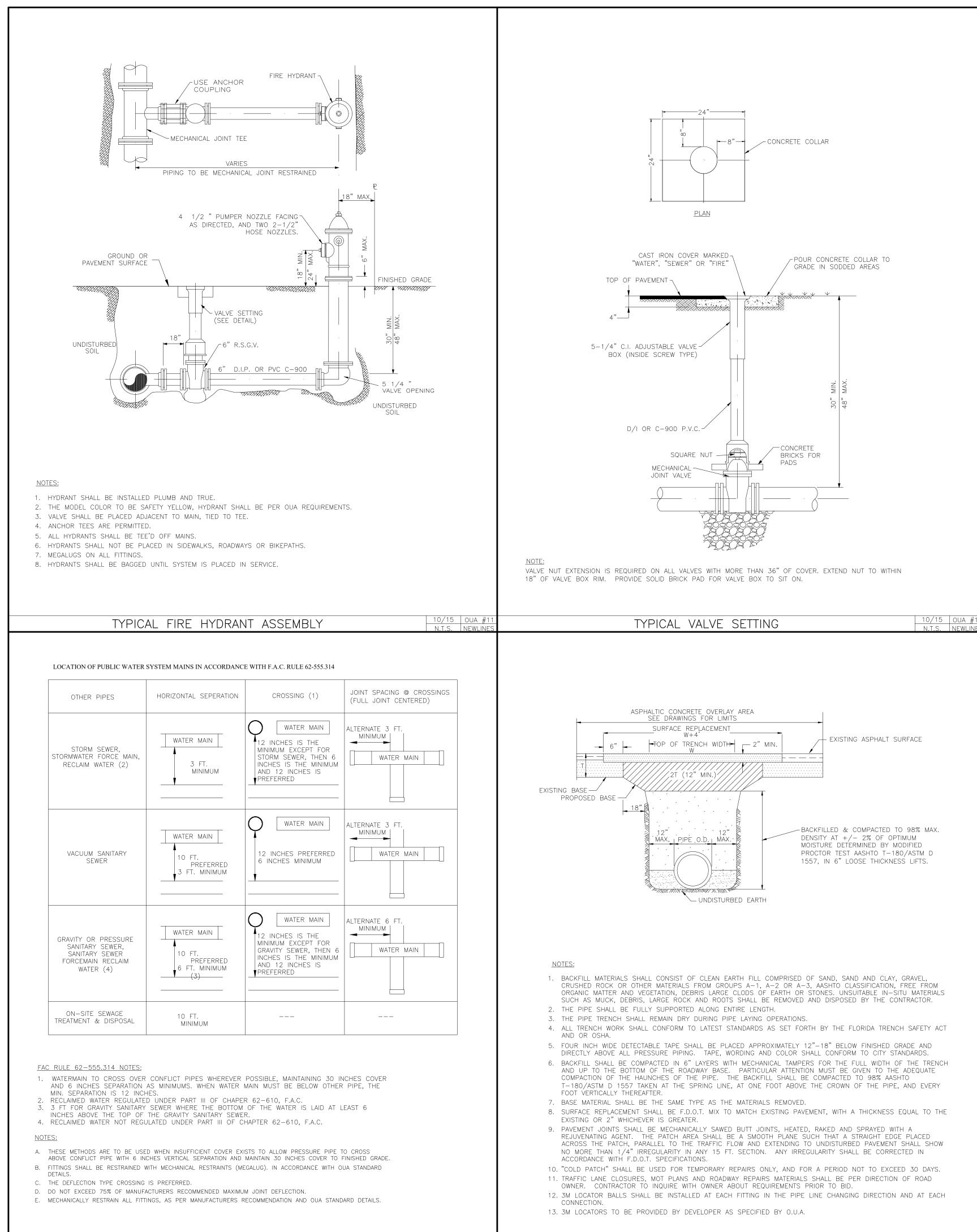

Ŗ

Newlines Engineering, 209 NE 2nd Street Okeechobee, FL 34974 863-824-7644

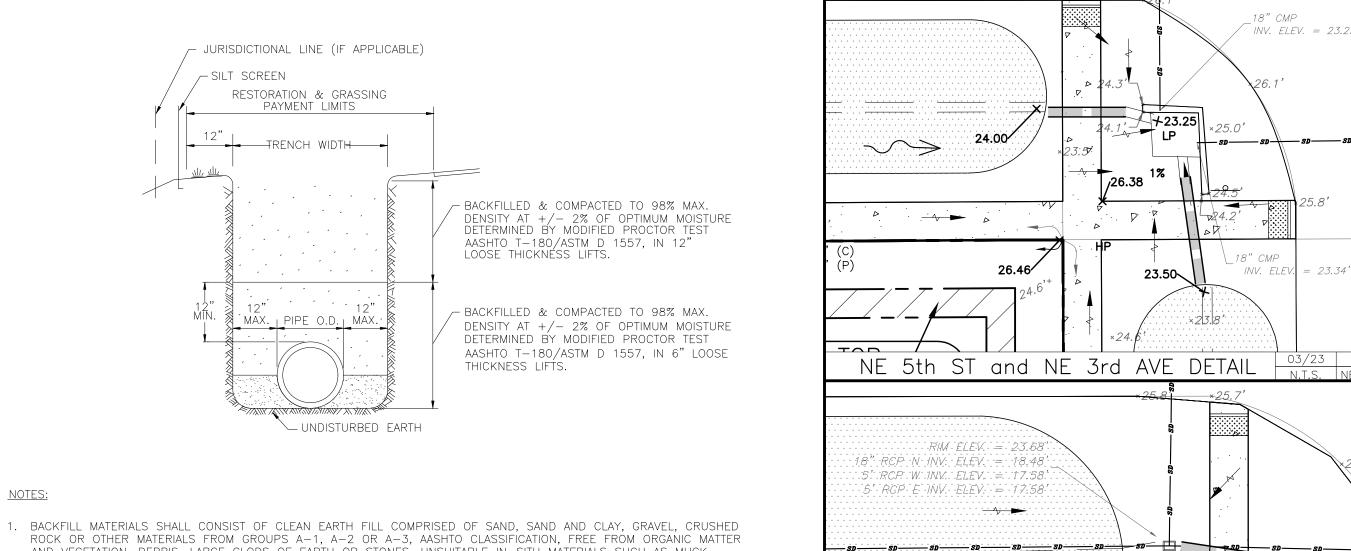

C502 OF 21



- 3. PIGGING OF LINES IS AN ACCEPTABLE METHOD OF CLEANING. 4. ABOVE GROUND PIPING TO BE REMOVED UPON COMPLETION OF TESTING.

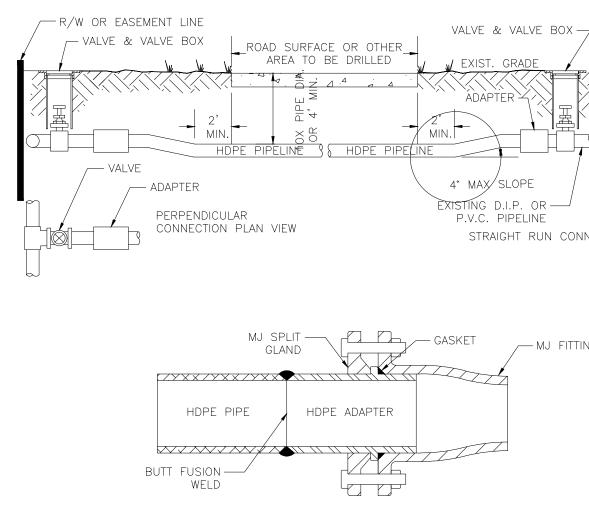


			DETAILS – 2	
			GLENWOOD PARK	
			LYING IN SEC 15, TOWNSHIP 37 SOUTH, RANGE 35 EAST, OKEECH	HOBEE CITY, FLORIDA
QUEST	JB	PDC PDC	NEWLINES	5 []
QUEST	JB	PDC	LAND CONSULTANTS LLC	
NEERING COMMENTS 08-14-2023	SLD	MB	JOSHUA C BROWN, P.E.	FL22024
NEERING COMMENTS 04-19-2023	SLD	SP		
F REPORT COMMENTS 04-19-2023	SLD	GL		" PDC/JCS
NEERING COMMENTS 04-19-2023	SLD	GL	SCALE	AS SHOWN
ING	SLD	PDC	FLORIDA PROFESSIONAL ENGINEER LICENSE 95730 DATE	AS SHOWIN
ND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF ND CLIENT FOR WHICH IT WAS PREPARED. REUSE OF AN WRITTEN AUTHORIZATION AND ADOPTION BY STEVEN L. DO ENGINEERING & SURVEY AND STEVEN L. DOBBS ENGINEER	BBS,		JOSHUA C BROWN, SLD Newlines Engineering, 209 NE 2nd Street Okeechobee, FL 34974 863-824-7644	2024-05-21 2601 OF 21


MINOR SUBDIVISION PLAN

ALL CONCRETE TO BE CLASS 'B' 3500 PSI (UNLESS OTHERWISE NOTED)

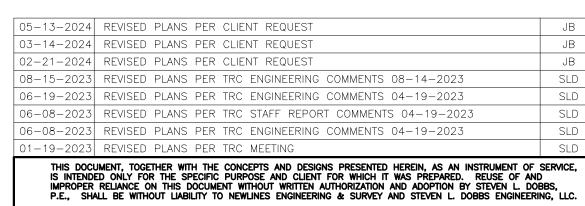
10/15 OUA #9A N.T.S. NEWLINES


10/15 OUA # WATER MAIN - SANITARY SEWER CONFLICT

<u>NOTES:</u>

- AND VEGETATION, DEBRIS, LARGE CLODS OF EARTH OR STONES. UNSUITABLE IN-SITU MATERIALS SUCH AS MUCK, DEBRIS, LARGE ROCKS AND ROOTS SHALL BE REMOVED AND DISPOSED OF BY THE CONTRACTOR.
- 2. THE PIPE SHALL BE FULLY SUPPORTED ALONG ENTIRE LENGTH. 3. THE PIPE TRENCH SHALL REMAIN DRY DURING PIPE LAYING OPERATIONS.
- 4. ALL TRENCH WORK SHALL CONFORM TO LATEST STANDARDS AS SET FORTH BY THE FLORIDA TRENCH SAFETY ACT AND OR OSHA.
- 5. FOUR INCH WIDE DETECTABLE TAPE SHALL BE PLACED APPROXIMATELY 12"-18" BELOW FINISHED GRADE AND DIRECTLY ABOVE ALL PRESSURE PIPING. TAPE, WORDING AND COLOR SHALL CONFORM TO CITY STANDARDS.
- 6. TRAFFIC LANE CLOSURES, MOT PLANS AND ROADWAY REPAIRS MATERIALS SHALL BE PER DIRECTION OF ROAD OWNER. CONTRACTOR TO INQUIRE WITH OWNER ABOUT REQUIREMENTS PRIOR TO BID.
- 7. 3M LOCATOR BALLS SHALL BE INSTALLED AT EACH FITTING IN THE PIPE LINE CHANGING DIRECTION AND AT EACH
- CONNECTION. 8. 3M LOCATORS TO BE PROVIDED BY DEVELOPER AS SPECIFIED BY O.U.A.

TYPICAL TRENCH DETAIL



HDPE-MJ ADAPTER

<u>NOTES:</u>

- 1. DIRECTIONAL DRILLS SHALL BE COMPLETED USING DR11 HDPE PIPE, DIP SIZE: FOR WATER AND SANITARY FORCE MAIN
- IPS SIZE: FOR VACUUM SEWER.
- 2. ALL DIRECTIONAL DRILLS SHALL BE AT A DEPTH OF 10X PIPE DIAMETER BELOW THE ROADWAY SURFACE OR 4' WHICHEVER IS GREATER.
- 3. ALL HDPE MUST BE COLOR CODED (SAFETY BLUE-WATER, SAFETY GREEN FOR SEWER AND PANTONE
- PURPLE FOR RECLAIMED WATER); BUTT FUSION WELDED; AND CONNECTED WITH HDPE-MJ ADAPTER. 4. 10 GUAGE SOLID COPPER LOCATING WIRES SHALL BE TAPED TO PIPE FROM VALVE TO VALVE AT A SPACING
- NO GREATER THAN 5 FEET AND PULLED WITH THE PIPE. SEE D17 FOR ADDITIONAL DETAILS. 5. GRAVITY SEWER BORES AS PREAPPROVED BY OUA.

DIRECTIONAL DRILLING DETAIL

10/15 OUA #1

NE 5th ST and NE 3rd AVE DETAIL - S<u>D</u>_____SD____SD_____SD____ 24.00 ×24,4 25[×]83^{+,2} A.

NE 4th ST and NE 3rd AVE DETAIL

15 02/

<u>49.97'(C)</u>

8" CMP

18" CM.

INV. ELEV. = 23.34'

× 23.50

/ INV. ELEV. = 23.25'

STRAIGHT RUN CONNECTION

/--- MJ FITTING

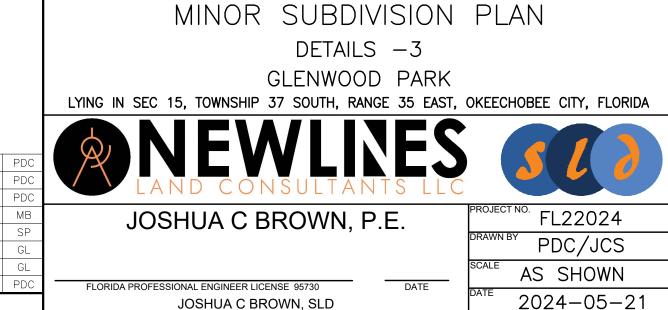
10/15 OUA #

JB

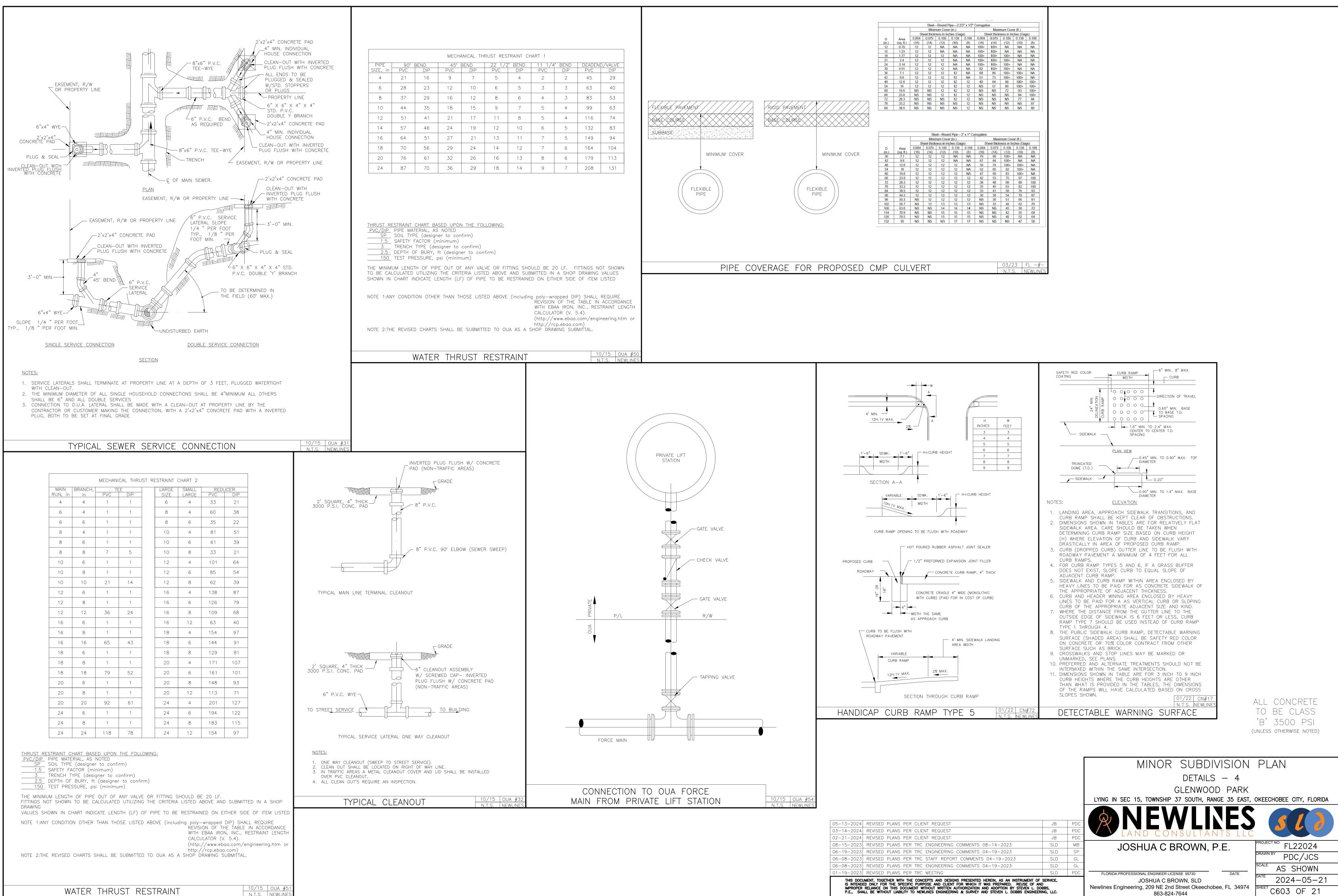
JB

SLD

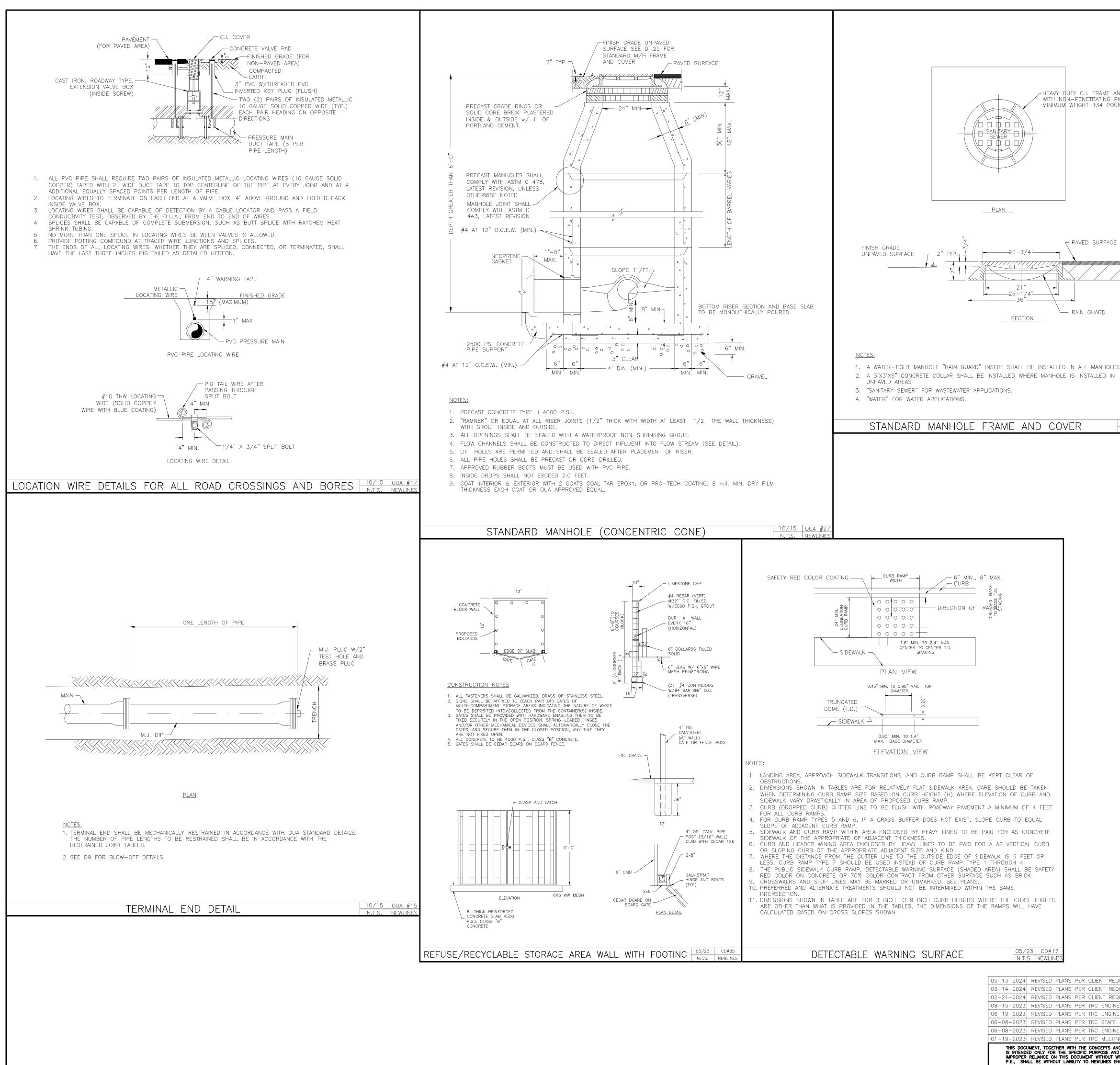
SLD


SLD

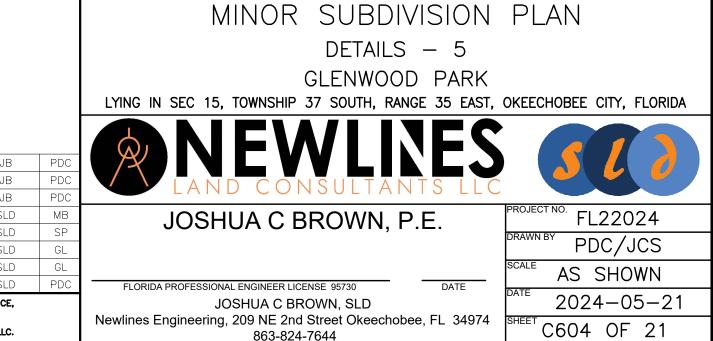
SLD

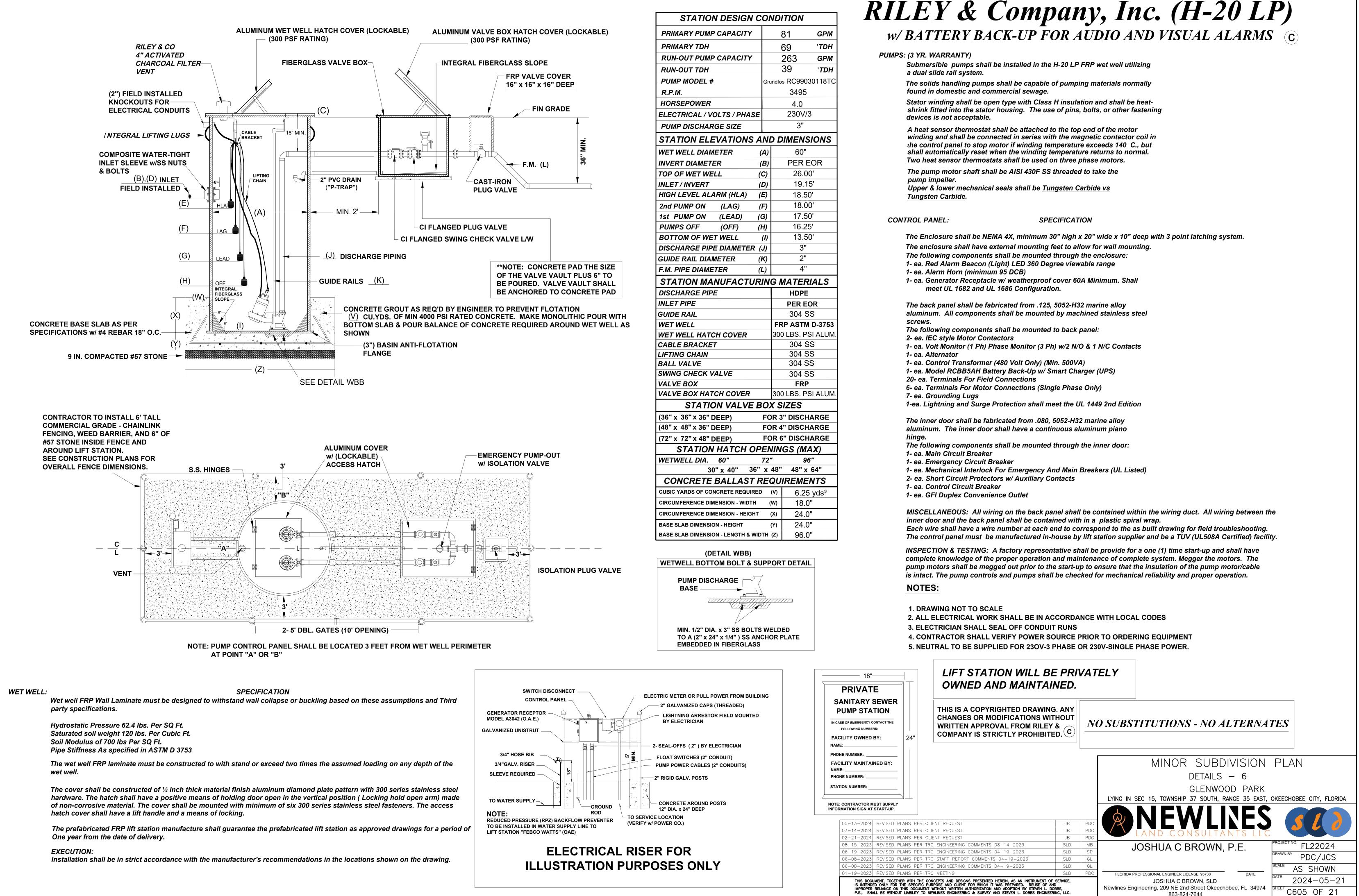

SLD

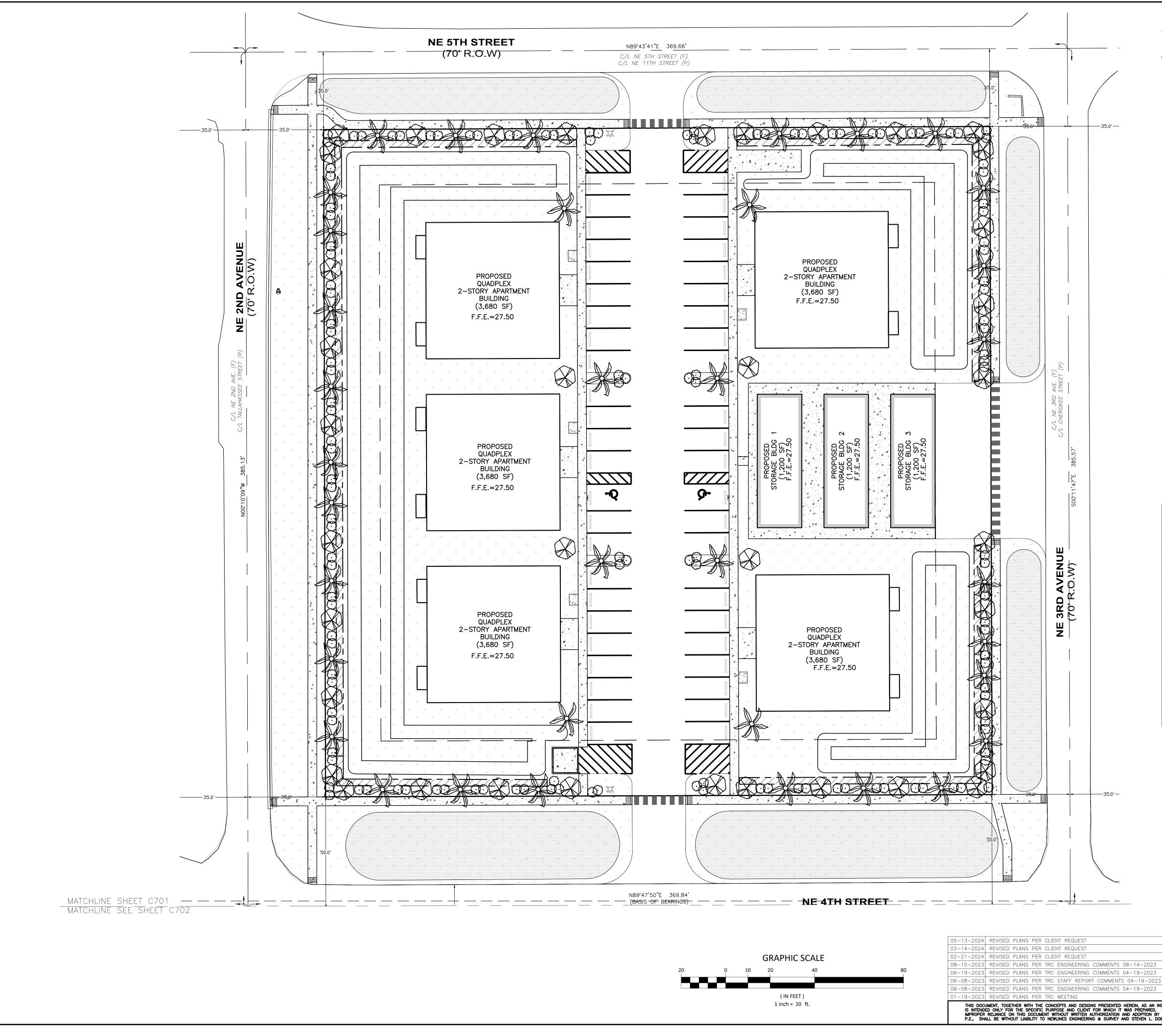
ALL CONCRETE TO BE CLASS 'B' 3500 PSI (UNLESS OTHERWISE NOTED)

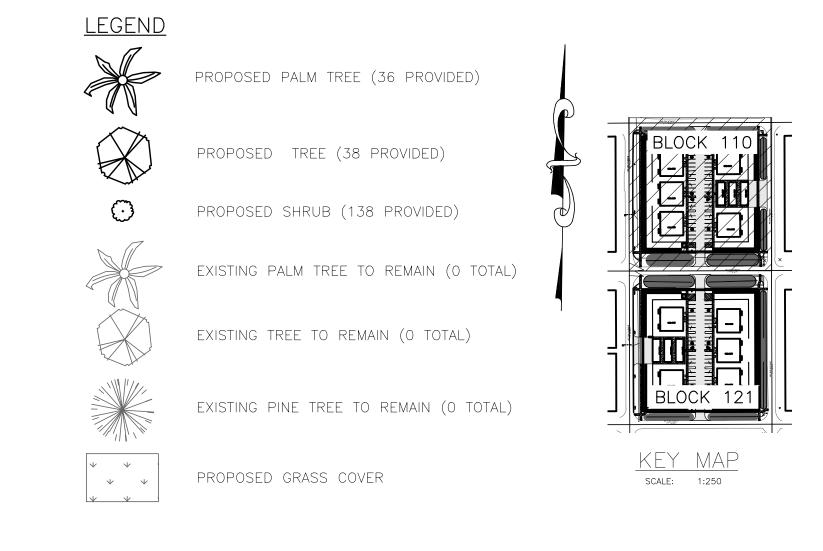

C602 OF 21

JOSHUA C BROWN, SLD Newlines Engineering, 209 NE 2nd Street Okeechobee, FL 34974 863-824-7644

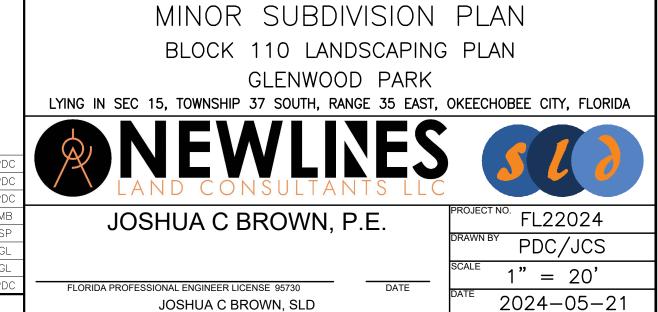

	ess in Inc 0.109 (12)	r (in.)			on			
79	0.109 (12)	linimum Cover (in.) nickness in Inches (Gage)				num Cove		
-	(12)				eet thickn			
•) > 		0.138	0.168	0.064	0.079	0.109	0.138	0.168
		(10)	(8)	(16)	(14)	(12)	(10)	(8)
	NA	NA	NA	100+	100+	NA	NA	NA
	NA	NA	NA	100+	100+	NA	NA	NA
	12	NA	NA	100+	100+	100+	NA	NA
	12	NA	NA	100+	100+	100+	NA	NA
	12	NA	NA	100+	100+	100+	NA	NA
	12	NA 12	NA NA	82	100+	100+	NA 1001	NA
	12	12		68	86	100+	100+	
	12	12	NA 12	51	73	100+	100+	NA 100+
	12 12	12 12	12	40 NS	64 57	90 80	100+ 100+	100+
-			12					
;	12 12	12	12 12	NS	NS	72 NG	93 84	100+
; ;	NS NS	12 12	12	NS NS	NS NS	NS NS	84 77	94
;	NS	NS	12	NS	NS	NS	NS	94 87
+	NS	NS	12	NS	NS	NS	NS	80
			3" x 1" Co	rrugation				
linim	um Cove	r (in.)			10 000 N V	num Cov	100 C	20)
linim nickn	um Cove ess in Ine	r (in.) ches (Ga	je)	St	neet thick	ness in In	ches (Ga	
linim nickn 79	um Cove ess in In 0.109	r (in.) ches (Ga 0.138	ge) 0.168	Sh 0.064	neet thickr 0.079	ness in In 0.109	ches (Gag 0.138	0.168
linim nickn 79 1)	um Cove ess in In 0.109 (12)	r (in.) ches (Ga 0.138 (10)	e) 0.168 (8)	St 0.064 (16)	0.079 (14)	ness in In 0.109 (12)	ches (Gag 0.138 (10)	0.168
linim nickn 79 1)	um Cove ess in In 0.109 (12) 12	r (in.) ches (Ga 0.138 (10) NA	(8) 0.168 (8) NA	St 0.064 (16) 79	0.079 (14) 99	ness in In 0.109 (12) 100+	ches (Gag 0.138 (10) NA	0.168 (8) NA
1inim nickn 79 1) 2	um Cove ess in In 0.109 (12) 12 12	r (in.) ches (Ga 0.138 (10) NA NA	0.168 (8) NA NA	St 0.064 (16) 79 67	0.079 (14)	0.109 (12) 100+ 100+	ches (Gag 0.138 (10) NA NA	0.168 (8) NA NA
1inim nickn 79 1) 2 2	um Cove ess in In 0.109 (12) 12	r (in.) ches (Ga 0.138 (10) NA	0.168 (8) NA NA NA	St 0.064 (16) 79	0.079 (14) 99 84	ness in In 0.109 (12) 100+	ches (Gag 0.138 (10) NA NA 100+	0.168 (8) NA NA NA
1inim	um Cove ess in In 0.109 (12) 12 12 12 12	r (in.) ches (Ga 0.138 (10) NA NA NA 12	0.168 (8) NA NA	St 0.064 (16) 79 67 59	0.079 (14) 99 84 74	0.109 (12) 100+ 100+ 100+	ches (Gag 0.138 (10) NA NA	0.168 (8) NA NA
1inim nickn 79 1) 2 2 2 2	um Cove ess in In 0.109 (12) 12 12 12 12 12 12	r (in.) ches (Ga 0.138 (10) NA NA 12 12	0.168 (8) NA NA NA NA	St 0.064 (16) 79 67 59 52	0.079 (14) 99 84 74 65	0.109 (12) 100+ 100+ 100+ 92	ches (Gag 0.138 (10) NA NA 100+ 100+	0.168 (8) NA NA NA
1inim nickn 79 1) 2 2 2 2 2 2	um Cove ess in In 0.109 (12) 12 12 12 12 12 12 12 12	r (in.) ches (Ga 0.138 (10) NA NA 12 12 12 12	0.168 (8) NA NA NA NA NA	St 0.064 (16) 79 67 59 52 47	0.079 (14) 99 84 74 65 59	0.109 (12) 100+ 100+ 100+ 92 83	ches (Gag 0.138 (10) NA NA 100+ 100+ 100+	0.168 (8) NA NA NA NA
1inim nickn 79 1) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	um Cove ess in In 0.109 (12) 12 12 12 12 12 12 12 12 12 12	r (in.) ches (Ga 0.138 (10) NA NA 12 12 12 12 12	0.168 (8) NA NA NA NA NA NA 12	St 0.064 (16) 79 67 59 52 47 42	eet thick 0.079 (14) 99 84 74 65 59 53	0.109 (12) 100+ 100+ 100+ 92 83 75	ches (Gag 0.138 (10) NA NA 100+ 100+ 100+ 97	0.168 (8) NA NA NA NA NA 100
1inim nickn 79 1) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	um Cove ess in In 0.109 (12) 12 12 12 12 12 12 12 12 12 12 12 12 12	r (in.) ches (Ga 0.138 (10) NA NA 12 12 12 12 12 12 12 12 12	0.168 (8) NA NA NA NA NA 12 12 12 12	St 0.064 (16) 79 67 59 52 47 42 38 35 33	neet thick 0.079 (14) 99 84 74 65 59 53 48 45 41	0.109 (12) 100+ 100+ 92 83 75 69 63 58	ches (Gag 0.138 (10) NA NA 100+ 100+ 100+ 97 89 82 76	0.168 (8) NA NA NA NA 100 100 100 93
linim nickn 79 1) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	um Cove ess in In 0.109 (12) 12 12 12 12 12 12 12 12 12 12 12 12 12	r (in.) ches (Ga 0.138 (10) NA NA 12 12 12 12 12 12 12 12 12 12 12	0.168 (8) NA NA NA NA NA 12 12 12 12 12 12	St 0.064 (16) 79 67 59 52 47 42 38 35 33 30	neet thickn 0.079 (14) 99 84 74 65 59 53 48 45 41 38	ness in In 0.109 (12) 100+ 100+ 100+ 92 83 75 69 63 58 54	ches (Ga 0.138 (10) NA NA 100+ 100+ 100+ 97 89 82 76 70	0.168 (8) NA NA NA NA 100 100 93 87
linim nickn 79 1) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	um Cove ess in In 0.109 (12) 12 12 12 12 12 12 12 12 12 12 12 12 12	r (in.) ches (Ga 0.138 (10) NA NA 12 12 12 12 12 12 12 12 12 12 12 12 12	0.168 (8) NA NA NA NA 12 12 12 12 12 12 12 12	St 0.064 (16) 79 67 59 52 47 42 38 35 33 30 NS	neet thickn 0.079 (14) 99 84 74 65 59 53 48 45 41 38 36	ness in ln 0.109 (12) 100+ 100+ 100+ 92 83 75 69 63 58 54 51	ches (Ga 0.138 (10) NA NA 100+ 100+ 100+ 97 89 82 76 70 66	0.168 (8) NA NA NA NA 100 100 100 93 87 81
linim rickn r9 } 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	um Cove ess in Ino 0.109 (12) 12 12 12 12 12 12 12 12 12 12 12 12 12	r (in.) ches (Gay 0.138 (10) NA NA 12 12 12 12 12 12 12 12 12 12 12 12 12	0.168 (8) NA NA NA NA 12 12 12 12 12 12 12 12 12 12 12 12 12	Sf 0.064 (16) 79 67 59 52 47 42 38 35 33 30 NS NS	neet thickn 0.079 (14) 99 84 74 65 59 53 48 45 41 38 36 33	ness in In 0.109 (12) 100+ 100+ 100+ 92 83 75 69 63 58 54 51 48	ches (Gag 0.138 (10) NA 100+ 100+ 100+ 97 89 82 76 70 66 62	0.168 (8) NA NA NA 100 100 93 87 81 76
linim 79 79 20 20 20 20 20 20 20 20 20 20 20 20 20	um Cove ess in In 0.109 (12) 12 12 12 12 12 12 12 12 12 12 12 12 12	r (in.) ches (Ga 0.138 (10) NA NA 12 12 12 12 12 12 12 12 12 12	0.168 (8) NA NA NA NA 12 12 12 12 12 12 12 12 12 12 12 12 12	Sł 0.064 (16) 79 67 59 52 47 42 38 35 33 30 NS NS NS	neet thickn 0.079 (14) 99 84 74 65 59 53 48 45 41 38 36 33 NS	ness in In 0.109 (12) 100+ 100+ 100+ 92 83 75 69 63 58 54 51 48 45	ches (Gag 0.138 (10) NA NA 100+ 100+ 100+ 100+ 97 89 82 76 70 66 62 58	0.168 (8) NA NA NA NA 100 100 93 87 81 76 72
linim 79 1) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	um Cove ess in Ino 0.109 (12) 12 12 12 12 12 12 12 12 12 12 12 12 12	r (in.) ches (Ga 0.138 (10) NA NA 12 12 12 12 12 12 12 12 12 12	0.168 (8) NA NA NA NA 12 12 12 12 12 12 12 12 12 12 12 12 12	Sf 0.064 (16) 79 67 59 52 47 42 38 35 33 30 NS NS NS NS	neet thickn 0.079 (14) 99 84 74 65 59 53 48 45 41 38 36 33 NS	ness in In 0.109 (12) 100+ 100+ 100+ 92 83 75 69 63 58 54 51 48 45 42	ches (Gag 0.138 (10) NA NA 100+ 100+ 100+ 100+ 97 89 82 76 70 66 66 62 58 55	0.168 (8) NA NA NA NA 100 100 100 100 93 87 81 76 72 68
linim 79 79 20 20 20 20 20 20 20 20 20 20 20 20 20	um Cove ess in In 0.109 (12) 12 12 12 12 12 12 12 12 12 12 12 12 12	r (in.) ches (Ga 0.138 (10) NA NA 12 12 12 12 12 12 12 12 12 12	0.168 (8) NA NA NA NA 12 12 12 12 12 12 12 12 12 12 12 12 12	Sł 0.064 (16) 79 67 59 52 47 42 38 35 33 30 NS NS NS	neet thickn 0.079 (14) 99 84 74 65 59 53 48 45 41 38 36 33 NS	ness in In 0.109 (12) 100+ 100+ 100+ 92 83 75 69 63 58 54 51 48 45	ches (Gag 0.138 (10) NA NA 100+ 100+ 100+ 100+ 97 89 82 76 70 66 62 58	0.168 (8) NA NA NA NA 100 100 93 87 81 76 72


	TRIPLEX LIFT STATIONS AND LARGER DESIGNS WILL REQUIRE PRIOR APPROVAL BY O.U.A.	
ND COVER, PICK HOLES; INDS;	LIFT STATIONS DESIGNED FOR A MOBILE GENERATOR SET-UP WILL INCLUDE EMERGENCY CONTROL BREAKER, GENERATOR RECEPTACLE	
,	LIFT STATIONS DESIGNED FOR A STATIONARY GENERATOR WILL NOT HAVE AN EMERGENCY CONTROL BREAKER, GENERATOR RECEPTACLE AND WILL ALSO INCLUDE A AUTOMATIC TRANSFER SWITCH	
	ENGINEER/CONTRACTOR TO CONFIRM PUMP CABLE SIZE, CONDUIT SIZE AND NUMBER OF CONDUITS TO ACCOMMODATE ALL WIRING FOR PUMPS, PANEL, JUNCTION BOX, AND TO INCLUDE A SPARE	
_		
	GENERAL NOTES FOR DUPLEX/TRIPLEX	
F	LIFT STATIONS	
S.		
10/15 OUA #25		
N.T.S. NEWLINES		


DETAILS INCLUDED IN THIS MINIMUM STANDARDS BOOK ARE FOR DUPLEX LIFT STATIONS.


ALL	CON	NCF	RETE
ΤO	ΒE	CL/	ASS
'₿'	350)()	PSI
UNLESS	OTHER	RWISE	NOTED)

REQUEST	JB	ΡĮ
REQUEST	JB	Ρ[
REQUEST	JB	PI
SINEERING COMMENTS 08-14-2023	SLD	N
SINEERING COMMENTS 04-19-2023	SLD	S
FF REPORT COMMENTS 04-19-2023	SLD	Ģ
SINEERING COMMENTS 04-19-2023	SLD	Ģ
TING	SLD	PI
AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF AND CLIENT FOR WHICH IT WAS PREPARED. REUSE OF ANI T WRITTEN AUTHORIZATION AND ADOPTION BY STEVEN L. DO ENGINEERING & SURVEY AND STEVEN L. DOBBS ENGINEERI) BBS,	

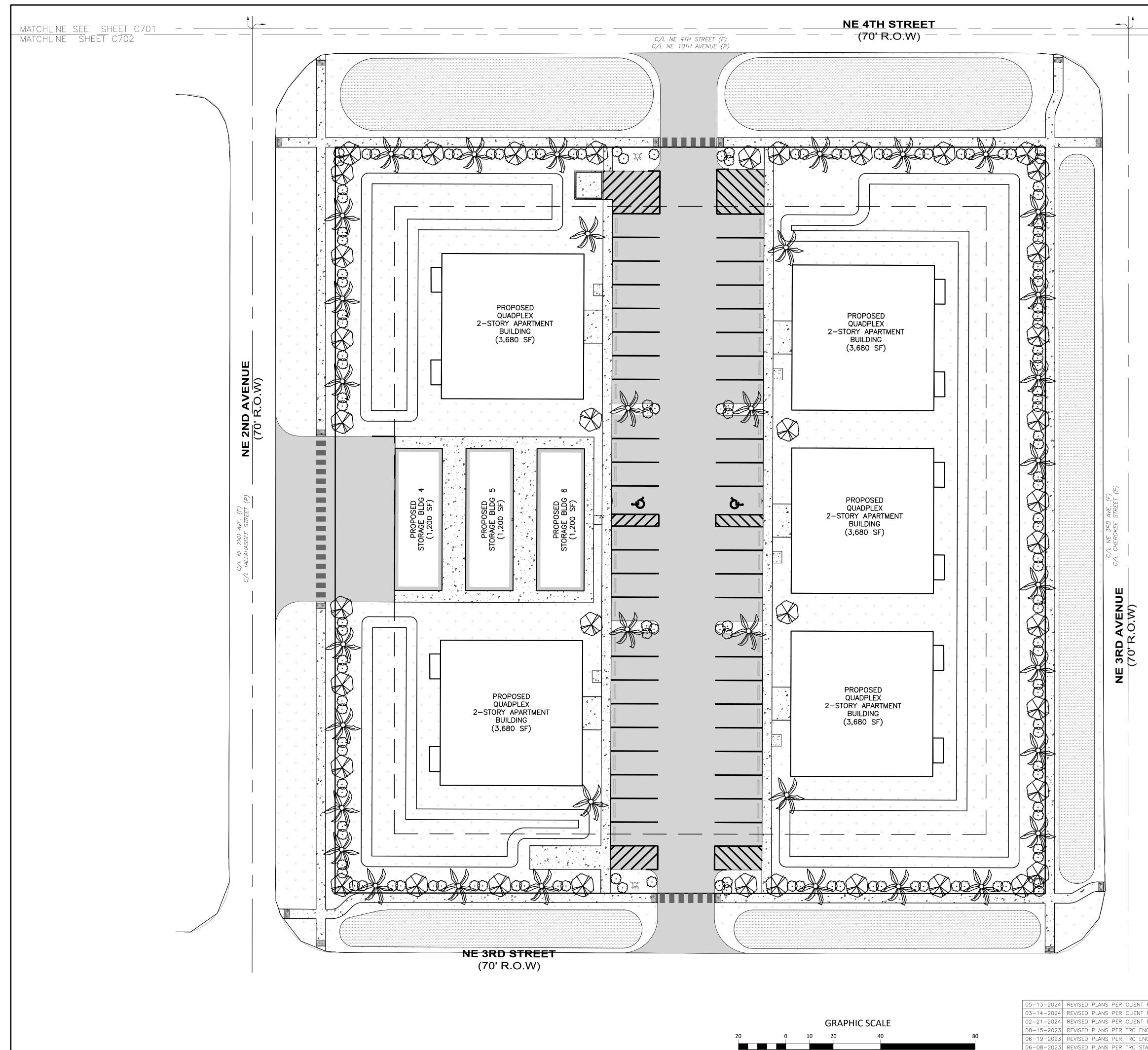

<u>NOTE</u>

— 35.0′ —

1. THERE ARE EXISTING TREES ONSITE THAT WILL MEET SOME OF THE LANDSCAPING REQUIREMENT. THIS WILL BE FIELD ADJUSTED.

- 2. THIS PLAN FOR SITE APPROVAL AND ONLY INDICATES THE LOCATION AND TYPE OF PROPOSED LANDSCAPING. THE SELECTED PLANT TO BE INSTALLED WILL HAVE TO MEET THE CITY OF OKEECHOBEE'S DIVISION 4 LANDSCAPE CODE FOR TYPE AND SIZE OF PLANTS INSTALLED.
- 3. CONSIDERATION WILL BE MADE TO PROTECT THE OVERHEAD UTILITY LINES FROM MATURE TREE GROWTH.
- 4. PLANTINGS WILL BE ELECTED FROM SOUTH FLORIDA WATER MANAGEMENT DISTRICT'S XERISCAPE PLAN GUIDE, WITH AT LEAST 75% OF THE TOTAL REQUIRED PLANS BEING NATIVE VERY DROUGHT TOLERANT SPECIES AS LISTED IN THAT PLANT GUIDE.
- 5. TREES SHALL BE AT LEAST 10' HIGH AND 2" DIAMETER MEASURED 4' ABOVE GROUND LEVEL AT THE TIME OF PLANTING.
- 6. LANDSCAPE AREAS WILL BE MULCH AROUND TREES AND SHRUBS.
- 7. FOR A DIVERSITY OF PLANTINGS, SABAL PALM (SABAL PALMETTO) AND PINDO PALM (BUTIA CAPITATA) WILL BE USE IN PLACES OTHER THAN DESCRIBE BELOW: a. FOR TREES UNDER POWER LINES, SILVER BUTTONWOOD (CONOCARPUS ERECTUS), AND
- CRAPE MYRTLE (LAGERSTROEMIA) WILL BE USED.
- b. FOR SHADE IN THE PARKING AREAS, LIVE OAK (QUERCUS VIRGINIANA), BLACK OLIVE (BUCIDA BUCERAS) OR GREEN BUTTONWOOD (CONOCARPUS ERECTUS) WILL BE USED.
- 8. FOR LANDSCAPING COVERAGE USE ST. AUGUSTINE GRASS (STENOTAPHRUM SECUNDATUM 'FLORATAM') GRASS.

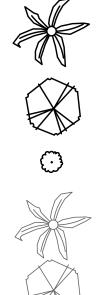
LANDSCAPING REQUIREMENTS	TREES	SHRUBS
MINIMUM LANDSCAPING REQUIREMENTS BASED ON 1 TREE AND 3 SHRUBS FOR EVERY 3,000 SF OF LOT AREA – 94,525 SF	31	93
MINIMUM LANDSCAPING REQUIREMENTS BASED ON MULTIFAMILY TWO TO FOUR BEDROOMS (3 TREES PER DWELLING) – 20 DWELLING UNITS	60	0
REQUIRED LANDSCAPED BUFFER: 1 TREE AND 3 SHRUBS FOR EACH 300 SF		
280 LF OF NON-DRIVEWAY FRONTAGE ON NE 5TH ST FOR 10' BUFFER REQUIRES 2,800 SF OF LANDSCAPED AREA	10	30
240 LF OF NON-DRIVEWAY FRONTAGE ON NE 3RD AVE FOR 10' BUFFER REQUIRES 2,400 SF OF LANDSCAPED AREA	8	24
280 LF OF NON-DRIVEWAY FRONTAGE ON NE 4TH ST FOR 10' BUFFER REQUIRES 2,800 SF OF LANDSCAPED AREA	10	30
230 LF OF FRONTAGE ON NE 2ND AVE FOR 10' BUFFER REQUIRES 3,000 SF OF LANDSCAPE AREA	10	30
MINIMUM PARKING LANDSCAPING REQUIREMENTS BASED ON 18 SF OF LANDSCAPING PER PARKING SPACE AND 1 TREE FOR EVERY 72 SF – 50 PARKING SPOTS	13	0
TOTAL REQUIRED LANDSCAPING:	73	114


C701 OF 21

Newlines Engineering, 209 NE 2nd Street Okeechobee, FL 34974

863-824-7644

JB JB JB SLD SLD SLD SLD SLD THIS DOCUMENT, TOGETHER WITH THE CONCEPTS AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF SERVICE, IS INTENDED ONLY FOR THE SPECIFIC PURPOSE AND CLIENT FOR WHICH IT WAS PREPARED. REUSE OF AND IMPROPER RELIANCE ON THIS DOCUMENT WITHOUT WRITTEN AUTHORIZATION AND ADOPTION BY STEVEN L. DOBBS, P.E., SHALL BE WITHOUT LIABILITY TO NEWLINES ENGINEERING & SURVEY AND STEVEN L. DOBBS ENGINEERING, LLC.

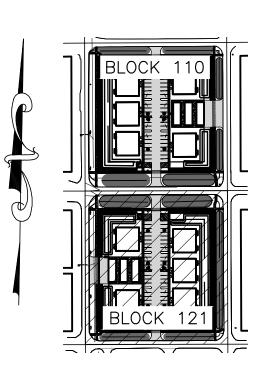

-35.0′-

(IN FEET) 1 inch = 20 ft.

06-08-2023 REVISED PLANS PER TRC ENG

PROPOSED PALM TREE (35 PROVIDED)

PROPOSED TREE (39 PROVIDED)


PROPOSED SHRUB (143 PROVIDED)

EXISTING PALM TREE TO REMAIN (O TOTAL)

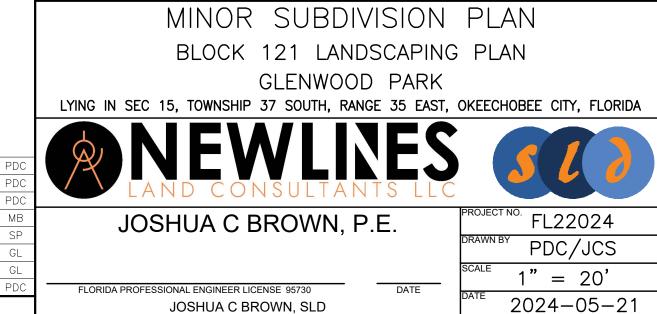
EXISTING TREE TO REMAIN (O TOTAL)

EXISTING PINE TREE TO REMAIN (O TOTAL)

PROPOSED GRASS COVER

<u>key map</u>

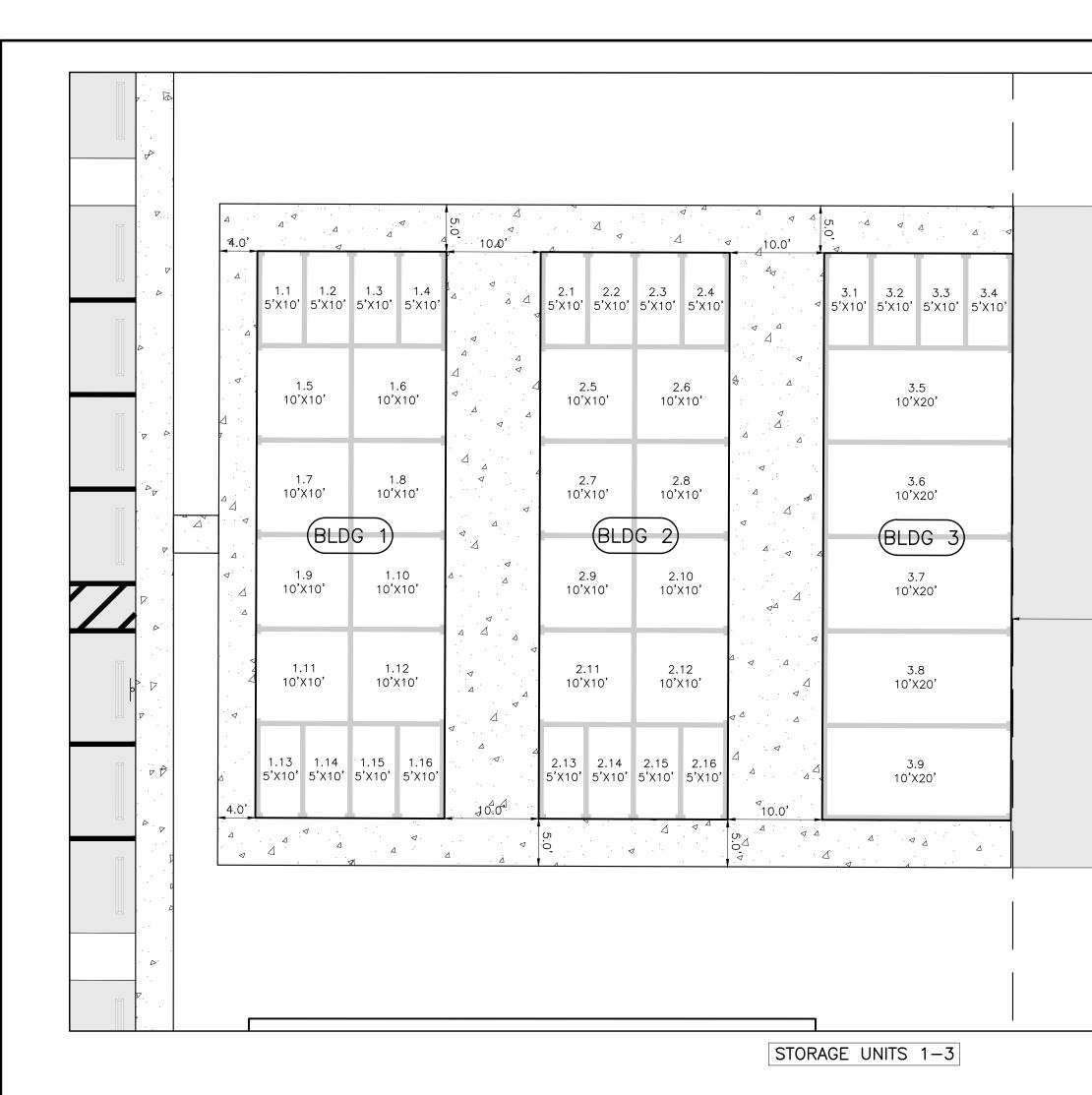
SCALE: 1:250

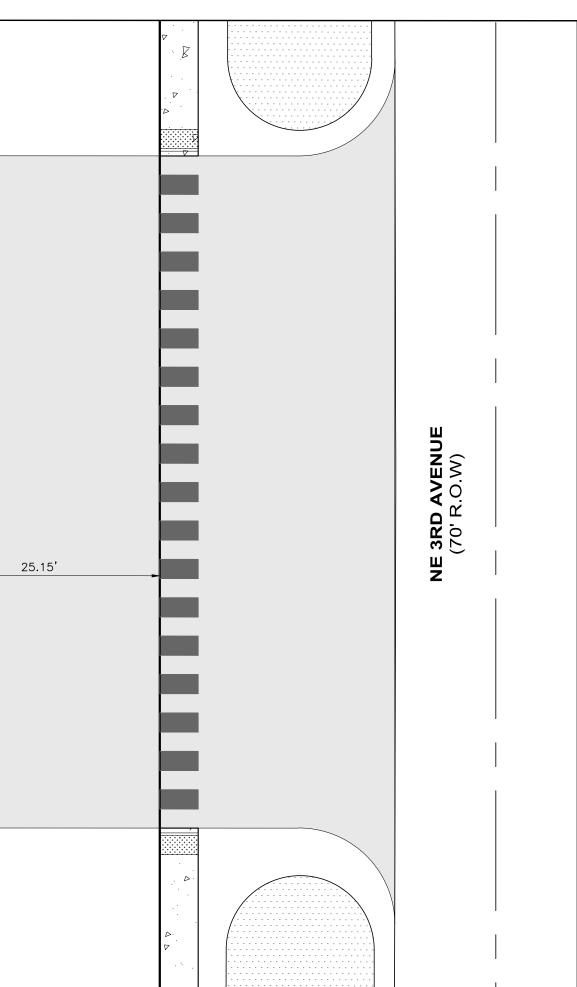

<u>NOTE</u>

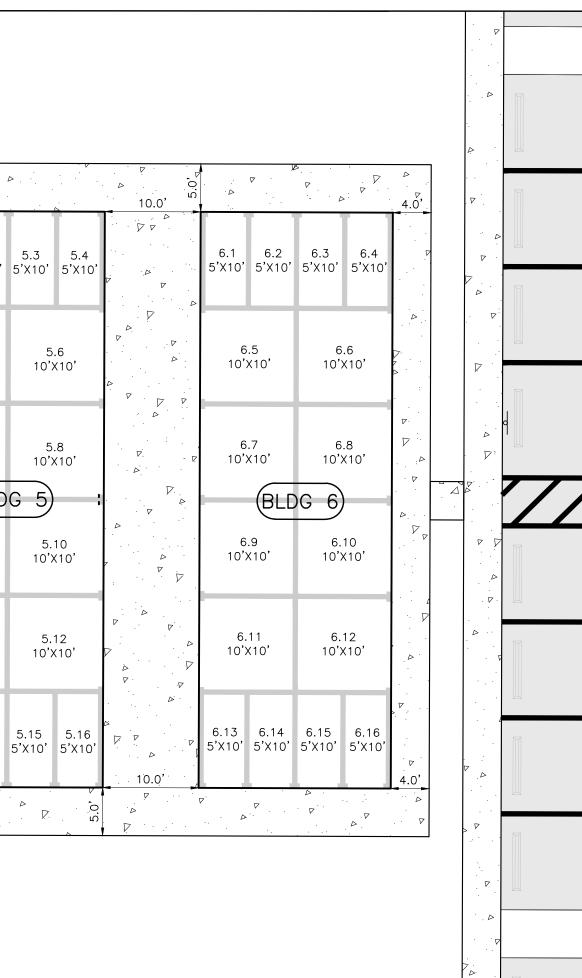
 \checkmark

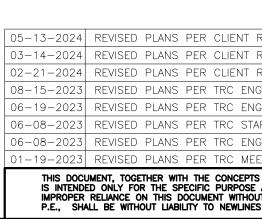
 \checkmark \checkmark

- 1. THERE ARE EXISTING TREES ONSITE THAT WILL MEET SOME OF THE LANDSCAPING REQUIREMENT. THIS WILL BE FIELD ADJUSTED.
- 2. THIS PLAN FOR SITE APPROVAL AND ONLY INDICATES THE LOCATION AND TYPE OF PROPOSED LANDSCAPING. THE SELECTED PLANT TO BE INSTALLED WILL HAVE TO MEET THE CITY OF
- OKEECHOBEE'S DIVISION 4 LANDSCAPE CODE FOR TYPE AND SIZE OF PLANTS INSTALLED. 3. CONSIDERATION WILL BE MADE TO PROTECT THE OVERHEAD UTILITY LINES FROM MATURE TREE GROWTH.
- 4. PLANTINGS WILL BE ELECTED FROM SOUTH FLORIDA WATER MANAGEMENT DISTRICT'S XERISCAPE PLAN GUIDE, WITH AT LEAST 75% OF THE TOTAL REQUIRED PLANS BEING NATIVE VERY DROUGHT TOLERANT SPECIES AS LISTED IN THAT PLANT GUIDE.
- 5. TREES SHALL BE AT LEAST 10' HIGH AND 2" DIAMETER MEASURED 4' ABOVE GROUND LEVEL AT THE TIME OF PLANTING.
- 6. LANDSCAPE AREAS WILL BE MULCH AROUND TREES AND SHRUBS.
- 7. FOR A DIVERSITY OF PLANTINGS, SABAL PALM (SABAL PALMETTO) AND PINDO PALM (BUTIA CAPITATA) WILL BE USE IN PLACES OTHER THAN DESCRIBE BELOW:
- a. FOR TREES UNDER POWER LINES, SILVER BUTTONWOOD (CONOCARPUS ERECTUS), AND CRAPE MYRTLE (LAGERSTROEMIA) WILL BE USED. b. FOR SHADE IN THE PARKING AREAS, LIVE OAK (QUERCUS VIRGINIANA), BLACK OLIVE
- (BUCIDA BUCERAS) OR GREEN BUTTONWOOD (CONOCARPUS ERECTUS) WILL BE USED. 8. FOR LANDSCAPING COVERAGE USE ST. AUGUSTINE GRASS (STENOTAPHRUM SECUNDATUM
- 'FLORATAM') GRASS.


LANDSCAPING REQUIREMENTS	TREES	SHRUBS
MINIMUM LANDSCAPING REQUIREMENTS BASED ON 1 TREE AND 3 SHRUBS FOR EVERY 3,000 SF OF LOT AREA – 94,525 SF	32	96
MINIMUM LANDSCAPING REQUIREMENTS BASED ON MULTIFAMILY TWO TO FOUR BEDROOMS (3 TREES PER DWELLING) – 20 DWELLING UNITS	60	0
REQUIRED LANDSCAPED BUFFER: 1 TREE AND 3 SHRUBS FOR EACH 300 SF		
280 LF OF NON-DRIVEWAY FRONTAGE ON NE 4TH ST FOR 10' BUFFER REQUIRES 2,800 SF OF LANDSCAPED AREA	10	30
320 LF OF NON-DRIVEWAY FRONTAGE ON NE 3RD AVE FOR 10' BUFFER REQUIRES 3,200 SF OF LANDSCAPED AREA	11	33
280 LF OF NON-DRIVEWAY FRONTAGE ON NE 3RD ST FOR 10' BUFFER REQUIRES 2,800 SF OF LANDSCAPED AREA	10	30
250 LF OF FRONTAGE ON NE 2ND AVE FOR 10' BUFFER REQUIRES 2,500 SF OF LANDSCAPE AREA	9	26
MINIMUM PARKING LANDSCAPING REQUIREMENTS BASED ON 18 SF OF LANDSCAPING PER PARKING SPACE AND 1 TREE FOR EVERY 72 SF – 52 PARKING SPOTS	14	0
TOTAL REQUIRED LANDSCAPING:	74	119


C702 OF 21


-13-2024	REVISED PLANS PEF	CLIENT REQUEST	JB	PDC
-14-2024	REVISED PLANS PER	CLIENT REQUEST	JB	PDC
-21-2024	REVISED PLANS PER	CLIENT REQUEST	JB	PDC
-15-2023	REVISED PLANS PEF	R TRC ENGINEERING COMMENTS 08-14-2023	SLD	MB
-19-2023	REVISED PLANS PEF	R TRC ENGINEERING COMMENTS 04-19-2023	SLD	SP
-08-2023	REVISED PLANS PER	R TRC STAFF REPORT COMMENTS 04-19-2023	SLD	GL
-08-2023	REVISED PLANS PER	R TRC ENGINEERING COMMENTS 04-19-2023	SLD	GL
-19-2023	REVISED PLANS PEF	R TRC MEETING	SLD	PDC
IS INTENDI	ED ONLY FOR THE SPECIFI RELIANCE ON THIS DOCUM	E CONCEPTS AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF C PURPOSE AND CLIENT FOR WHICH IT WAS PREPARED. REUSE OF AND MENT WITHOUT WRITTEN AUTHORIZATION AND ADOPTION BY STEVEN L. DOM TO NEWLINES ENGINEERING & SURVEY AND STEVEN L. DOBBS ENGINEERI) BBS,	


JOSHUA C BROWN, SLD Newlines Engineering, 209 NE 2nd Street Okeechobee, FL 34974 863-824-7644

 ∇ · Δ. . 🗸 ₽°.0 PA.V · .Þ 5.1 5.2 5.3 5.4 4.1 · · 7 5'X10' 5'X10' 5'X10' 5'X10' 10'X20' Δ... · V · D 5.5 4.2 10**'**X20' 10'X10' ∇^{P} Ш 5.7 4.3 **2ND AVENU** (70' R.O.W) 10'X10' 10'X20' ⊳. ⊽ (BLDG 4) 25.17**'** (BLDG 5) ∇ . Þ. 5.9 ∇ 4.4 10'X20' 10'X10' ШN . . D : 🔽 : A 5.11 4.5 10'X20' · 7 · 10'X10' 4.6 4.7 4.8 4.9 5.13 5.14 5.15 5.16 5'X10' 5'X10' 5'X10' 5'X10' 5'X10' 5'X10' 5'X10' 5'X10' 10.0' \triangleright ∇ STORAGE UNITS 4-6

	<u>NC</u> 1.				ARE FOR USE ONL Y OR FOR SITE OP	
10		0	5	-	HIC SCALE	

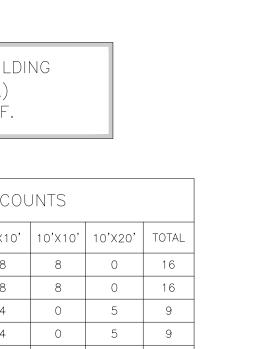
UNIT COUNTS				
	5'X10'	10'X10'	10'X20'	TOTAL
STORAGE BUILDING 1	8	8	0	16
STORAGE BUILDING 2	8	8	0	16
STORAGE BUILDING 3	4	0	5	9
STORAGE BUILDING 4	4	0	5	9
STORAGE BUILDING 5	8	8	0	16
STORAGE BUILDING 6	8	8	0	16
TOTAL	40	32	10	82

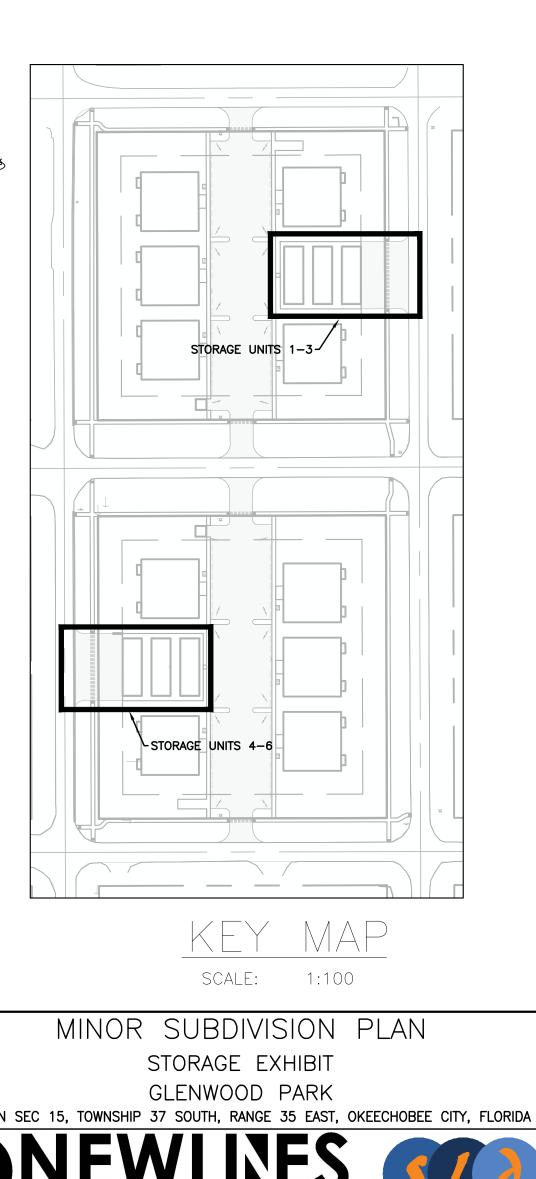
(IN FEET) 1 inch = 10 ft.

1,200

6 STORAGE

(TYPI


REQUEST	JB	PDC
REQUEST	JB	PDC
REQUEST	JB	PDC
NGINEERING COMMENTS 08-14-2023	SLD	MB
NGINEERING COMMENTS 04-19-2023	SLD	SP
TAFF REPORT COMMENTS 04-19-2023	SLD	GL
NGINEERING COMMENTS 04-19-2023	SLD	GL
EETING	SLD	PDC
ts and designs presented herein, as an instrument of e and client for which it was prepared. Reuse of and dut written authorization and adoption by steven L. Doi es engineering & survey and steven L. Dobbs engineeri) BBS,	


SCALE: 1:10	0
MINOR SUBDIVISION	PLAN
STORAGE EXHIBIT	
GLENWOOD PARK	
LYING IN SEC 15, TOWNSHIP 37 SOUTH, RANGE 35 EAST,	OKEECHOBEE CITY, FLORIDA
NEWLIES	
JOSHUA C BROWN, P.E.	PROJECT NO. FL22024
	PDC/JCS
FLORIDA PROFESSIONAL ENGINEER LICENSE 95730 DATE	1" = 10'
JOSHUA C BROWN, SLD	DATE 2024-05-21
Newlines Engineering, 209 NE 2nd Street Okeechobee, FL 34974 863-824-7644	SHEET C801 OF 21

60'	
BUILDING ICAL)) S.F.	

BUILDING ICAL)) S.F.

